论文标题
测试基本物理的核钟
Nuclear clocks for testing fundamental physics
论文作者
论文摘要
$^{229} $ th中的低能,长寿的异构体在1970年代首次作为核物理学中的异国情调研究,继续激发了一个多学科的物理学家社区。使用核共振频率,由原子核内部的强和电磁相互作用确定,可以建立一个高度精确的核时钟,该时钟与基于电子壳的共振频率的所有其他原子钟根本不同。核时钟将为高度敏感的物理原理开辟机会,特别是在寻找违反爱因斯坦等效原理以及超越标准模型以外的新粒子和相互作用的情况。有人建议使用核时钟来寻找电磁和强耦合常数的变化以及用于暗物质的搜索。 鉴于核过渡频率当前不确定性与自然线宽之间的近17个数量级,$^{229} $ th核光学时钟仍然是一个重大挑战。近年来已经取得了重大的实验进展,将进行简要审查。此外,将概述一种研究策略,以合并我们目前关于必需$^{229 \ rm {m}} $ th属性的知识,以确定用激光光谱精度来确定核过渡频率,实现不同类型的核时钟,并以精确的频率与光学频率相比,以测试基本原子时钟以测试基本的基本物理学。将讨论两种途径:激光冷却的$^{229} $ th离子,允许对核 - 电子相互作用和最小的系统频移的实验,并在不同的粒径和不同的电子环境中实现实验。
The low-energy, long-lived isomer in $^{229}$Th, first studied in the 1970s as an exotic feature in nuclear physics, continues to inspire a multidisciplinary community of physicists. Using the nuclear resonance frequency, determined by the strong and electromagnetic interactions inside the nucleus, it is possible to build a highly precise nuclear clock that will be fundamentally different from all other atomic clocks based on resonant frequencies of the electron shell. The nuclear clock will open opportunities for highly sensitive tests of fundamental principles of physics, particularly in searches for violations of Einstein's equivalence principle and for new particles and interactions beyond the standard model. It has been proposed to use the nuclear clock to search for variations of the electromagnetic and strong coupling constants and for dark matter searches. The $^{229}$Th nuclear optical clock still represents a major challenge in view of the tremendous gap of nearly 17 orders of magnitude between the present uncertainty in the nuclear transition frequency and the natural linewidth. Significant experimental progress has been achieved in recent years, which will be briefly reviewed. Moreover, a research strategy will be outlined to consolidate our present knowledge about essential $^{229\rm{m}}$Th properties, to determine the nuclear transition frequency with laser spectroscopic precision, realize different types of nuclear clocks and apply them in precision frequency comparisons with optical atomic clocks to test fundamental physics. Two avenues will be discussed: laser-cooled trapped $^{229}$Th ions that allow experiments with complete control on the nucleus-electron interaction and minimal systematic frequency shifts, and Th-doped solids enabling experiments at high particle number and in different electronic environments.