论文标题
高密度bose-Einstein冷凝水的孤子动力学,经过一段时间的肛门陷阱的变化
Soliton dynamics of a high-density Bose-Einstein condensate subject to a time varying anharmonic trap
论文作者
论文摘要
在本文中,我们研究了受时间振荡陷阱的高密度玻色凝结物(BEC)的孤子动力学。 BEC的行为是用修改的GROSS-PITAEVSKII方程(MGPE)来描述的,该方程考虑了三体损失,原子喂养和量子波动(最多可达新型的高密度项)。差异近似(VA)用于研究高斯脉冲在静态双孔电势下的行为。 MGPE的直接数值溶液证实了脉冲的中心表现出振荡行为(如VA预测),并显示出碎片和再生的新现象(FR)。结果表明,如果我们考虑具有时间依赖的二次术语的潜力,则该FR过程将被破坏,但是如果在立方术语中引入时间依赖性,则FR幸存下来。 VA和数值解决方案之间的比较表明,当脉冲的振荡保留在一个潜在的井中时,一致性是一致的。研究了量子波动项对FR过程的影响。最后,获得了使用Supergaussian试验功能的变异结果。
In this paper we study the soliton dynamics of a high-density Bose-Einstein condensate (BEC) subject to a time-oscillating trap. The behavior of the BEC is described with a modified Gross-Pitaevskii equation (mGPE) which takes into account three-body losses, atomic feeding and quantum fluctuations (up to a novel high-density term). A variational approximation (VA) is used to study the behavior of a Gaussian pulse in a static double-well potential. Direct numerical solutions of the mGPE corroborate that the center of the pulse exhibits an oscillatory behavior (as the VA predicts), and show a novel phenomenon of fragmentation and regeneration (FR). It is shown that this FR process is destroyed if we consider a potential with a time-dependent quadratic term, but the FR survives if the time dependence is introduced in a cubic term. Comparison between the VA and the numerical solution revealed an excellent agreement when the oscillations of the pulse remain in one of the potential wells. The effects of the quantum fluctuating terms on the FR process are studied. Finally, variational results using a supergaussian trial function are obtained.