论文标题

多分析:通过多项式重演去除温和的模糊

Polyblur: Removing mild blur by polynomial reblurring

论文作者

Delbracio, Mauricio, Garcia-Dorado, Ignacio, Choi, Sungjoon, Kelly, Damien, Milanfar, Peyman

论文摘要

我们提出了一种高效的盲恢复方法,可以消除自然图像中的轻度模糊。与主流相反,我们专注于去除经常存在的轻微模糊,损坏图像质量,通常由小小的异常,镜头模糊或轻微的摄像机运动产生。提出的算法首先估计图像模糊,然后通过以原则性的方式组合估计模糊的多个应用来弥补它。为了估计模糊,我们基于关于梯度在尖锐的自然图像中分布的经验观察,引入了一种简单而健壮的算法。我们的实验表明,在轻度模糊的背景下,提出的方法的表现优于传统和现代的盲目脱毛方法,并且在一小部分时间内运行。与其他高度复杂和计算苛刻的技术相比,我们的方法可以用来盲目纠正模糊,从而实现现成的深层超分辨率方法。提出的方法估算并消除了一秒钟的现代手机上的12MP图像中的轻度模糊。

We present a highly efficient blind restoration method to remove mild blur in natural images. Contrary to the mainstream, we focus on removing slight blur that is often present, damaging image quality and commonly generated by small out-of-focus, lens blur, or slight camera motion. The proposed algorithm first estimates image blur and then compensates for it by combining multiple applications of the estimated blur in a principled way. To estimate blur we introduce a simple yet robust algorithm based on empirical observations about the distribution of the gradient in sharp natural images. Our experiments show that, in the context of mild blur, the proposed method outperforms traditional and modern blind deblurring methods and runs in a fraction of the time. Our method can be used to blindly correct blur before applying off-the-shelf deep super-resolution methods leading to superior results than other highly complex and computationally demanding techniques. The proposed method estimates and removes mild blur from a 12MP image on a modern mobile phone in a fraction of a second.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源