论文标题

Starcnet:星团标识的机器学习

StarcNet: Machine Learning for Star Cluster Identification

论文作者

Perez, Gustavo, Messa, Matteo, Calzetti, Daniela, Maji, Subhransu, Jung, Dooseok, Adamo, Angela, Siressi, Mattia

论文摘要

我们提出了一条机器学习(ML)管道,以鉴定附近星系的彩色图像中的星形簇,从使用Hubble Space望远镜获得的观测值作为财政部项目Legus的一部分(传统外静脉外紫外线调查)。 Starcnet(Star Cluster分类网络)是一种多尺度卷积神经网络(CNN),可在Legus Galaxies的图像中获得68.6%(4个类)/86.0%(2类:2类:群集/非群集)的精度,几乎匹配了人类专家。我们通过将预训练的CNN模型应用于训练集未包含的星系中,找到类似于参考的准确性,来测试Starcnet的性能。我们通过比较starcnet和人类标记的多色亮度函数和质量年龄图来测试Starcnet预测对推断簇特性的影响;恒星簇的光度,颜色和物理特征的分布对于人和ML分类样品相似。 ML方法有两个优点:(1)分类的可重复性:ML算法的偏见是固定的,可以测量以进行后续分析; (2)分类速度:该算法需要人类需要数周到几个月才能执行的任务分钟。通过与人类分类器相当的精度,Starcnet将使分类扩展到比当前可用的更多候选样本,从而大大增加了集群研究的统计数据。

We present a machine learning (ML) pipeline to identify star clusters in the multi{color images of nearby galaxies, from observations obtained with the Hubble Space Telescope as part of the Treasury Project LEGUS (Legacy ExtraGalactic Ultraviolet Survey). StarcNet (STAR Cluster classification NETwork) is a multi-scale convolutional neural network (CNN) which achieves an accuracy of 68.6% (4 classes)/86.0% (2 classes: cluster/non-cluster) for star cluster classification in the images of the LEGUS galaxies, nearly matching human expert performance. We test the performance of StarcNet by applying pre-trained CNN model to galaxies not included in the training set, finding accuracies similar to the reference one. We test the effect of StarcNet predictions on the inferred cluster properties by comparing multi-color luminosity functions and mass-age plots from catalogs produced by StarcNet and by human-labeling; distributions in luminosity, color, and physical characteristics of star clusters are similar for the human and ML classified samples. There are two advantages to the ML approach: (1) reproducibility of the classifications: the ML algorithm's biases are fixed and can be measured for subsequent analysis; and (2) speed of classification: the algorithm requires minutes for tasks that humans require weeks to months to perform. By achieving comparable accuracy to human classifiers, StarcNet will enable extending classifications to a larger number of candidate samples than currently available, thus increasing significantly the statistics for cluster studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源