论文标题

对医学图像的当地歧视性表示的无监督学习

Unsupervised Learning of Local Discriminative Representation for Medical Images

论文作者

Chen, Huai, Li, Jieyu, Wang, Renzhen, Huang, Yijie, Meng, Fanrui, Meng, Deyu, Peng, Qing, Wang, Lisheng

论文摘要

在许多医学图像分析任务中需要局部判别性表示,例如识别病变的子类型或分割解剖结构的详细组成部分。但是,常用的监督表示学习方法需要大量注释的数据,而无监督的判别表示学习可以通过学习全球特征来区分不同的图像,这两种特征都不适合局部医学图像分析任务。为了避免这两种方法的局限性,我们将本地歧视引入了本工作中无监督的表示的学习中。该模型包含两个分支:一个是一个嵌入分支,该分支学习嵌入功能以在低维超晶体上分散不同的像素。另一个是一个聚类分支,它学习一个聚类函数,将类似像素分类为同一群集。这两个分支以互惠互利的模式同时训练,并且学到的局部歧视性表示能够很好地衡量当地图像区域的相似性。这些表示形式可以转移以增强各种下游任务。同时,在模拟或其他具有相似拓扑特征的结构的指导下,它们也可以应用于未标记的医学图像的群集解剖结构。通过增强视网膜图像和胸部X射线图像中的各种下游任务并聚集解剖结构来证明所提出方法的有效性和实用性。

Local discriminative representation is needed in many medical image analysis tasks such as identifying sub-types of lesion or segmenting detailed components of anatomical structures. However, the commonly applied supervised representation learning methods require a large amount of annotated data, and unsupervised discriminative representation learning distinguishes different images by learning a global feature, both of which are not suitable for localized medical image analysis tasks. In order to avoid the limitations of these two methods, we introduce local discrimination into unsupervised representation learning in this work. The model contains two branches: one is an embedding branch which learns an embedding function to disperse dissimilar pixels over a low-dimensional hypersphere; and the other is a clustering branch which learns a clustering function to classify similar pixels into the same cluster. These two branches are trained simultaneously in a mutually beneficial pattern, and the learnt local discriminative representations are able to well measure the similarity of local image regions. These representations can be transferred to enhance various downstream tasks. Meanwhile, they can also be applied to cluster anatomical structures from unlabeled medical images under the guidance of topological priors from simulation or other structures with similar topological characteristics. The effectiveness and usefulness of the proposed method are demonstrated by enhancing various downstream tasks and clustering anatomical structures in retinal images and chest X-ray images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源