论文标题
depaug:通过分解的特征表示和语义增强的分布概括
DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation
论文作者
论文摘要
虽然深度学习证明了其处理独立和相同分布(IID)数据的强大能力,但它通常遭受分布(OOD)概括的损害,其中测试数据来自另一个分布(W.R.T.培训一个)。在广泛的应用程序上设计一般的OOD概括框架是具有挑战性的,这主要是由于现实世界中可能的相关性转移和多样性变化。以前的大多数方法只能解决一个特定的分布变化,例如跨域的转移或相关性的推断。为了解决这个问题,我们提出了decaug,这是一种新颖的分解特征表示和语义增强方法,以进行OOD泛化。 Decaug将与类别相关的和上下文相关的功能解开。与类别相关的功能包含目标对象的因果信息,而与上下文相关的功能描述了属性,样式,背景或场景,从而导致培训和测试数据之间的分布变化。分解是通过将两个损失的两个梯度(W.R.T.中间特征)正交实现,以预测类别和上下文标签。此外,我们对与上下文相关的特征进行基于梯度的增强,以提高学习界表示的鲁棒性。实验结果表明,depaug在各种OOD数据集上的其他最新方法优于其他最先进的方法,这是可以应对不同类型的OOD概括挑战的极少数方法之一。
While deep learning demonstrates its strong ability to handle independent and identically distributed (IID) data, it often suffers from out-of-distribution (OoD) generalization, where the test data come from another distribution (w.r.t. the training one). Designing a general OoD generalization framework to a wide range of applications is challenging, mainly due to possible correlation shift and diversity shift in the real world. Most of the previous approaches can only solve one specific distribution shift, such as shift across domains or the extrapolation of correlation. To address that, we propose DecAug, a novel decomposed feature representation and semantic augmentation approach for OoD generalization. DecAug disentangles the category-related and context-related features. Category-related features contain causal information of the target object, while context-related features describe the attributes, styles, backgrounds, or scenes, causing distribution shifts between training and test data. The decomposition is achieved by orthogonalizing the two gradients (w.r.t. intermediate features) of losses for predicting category and context labels. Furthermore, we perform gradient-based augmentation on context-related features to improve the robustness of the learned representations. Experimental results show that DecAug outperforms other state-of-the-art methods on various OoD datasets, which is among the very few methods that can deal with different types of OoD generalization challenges.