论文标题
在块状式子缩影上
On entropies of block-gluing subshifts
论文作者
论文摘要
如果任何整数$ n \ geq c $和任何两个块$ u $ u $和$ v $从$ x $的语言中,则有一个$ x $的元素,$ x $的元素是$ x $的,$ u $和$ v $在dmange $ n $中都存在$ x $。在本说明中,我们研究了$ c $ block粘合二维一维乘坐的拓扑熵。我们将集合$ r_c $定义为所有$ c $ block-block-glock-gluing shifts的熵,而$ r = \ cup_ {c \ in \ mathbb {n}} r_c $。我们表明,集合$ r $是密集的,而$ r_1 $和$ r_2 $不是;特别是,它们有孤立的点。我们猜想任何$ c $都具有相同的含量。
A subshift $X$ is called $c$-block gluing if for any integer $n\geq c$ and any two blocks $u$ and $v$ from the language of $X$ there exists an element of $X$ which has occurrences of $u$ and $v$ at distance $n$. In this note we study the topological entropies of $c$-block gluing binary one-dimensional subshifts. We define the set $R_c$ to be the set of entropies of all $c$-block-gluing subshifts, and $R=\cup_{c\in \mathbb{N}} R_c$. We show that the set $R$ is dense, while $R_1$ and $R_2$ are not; in particular, they have isolated points. We conjecture that the same holds for any $c$.