论文标题

时刻的变分方法

The Variational Method of Moments

论文作者

Bennett, Andrew, Kallus, Nathan

论文摘要

有条件的力矩问题是一种有力的公式,用于描述结构性因果参数,这是一个重要的例子,这是仪器变量回归。标准方法将问题降低到一组有限的边缘力矩条件,并应用了最佳加权的矩(owgmm),但这要求我们知道一组有限的识别矩,即使识别也可能是效率低下的,或者如果理论上可以有效,但实际上是在使用时刻的晕厥条件,则可能是效率的。由OWGMM的各种最小值重新印度的促进,我们为条件力矩问题定义了非常一般的估计器类别,我们将其称为矩(VMM)的变异方法,并且自然能够控制无限的时刻。我们提供了多个VMM估计量的详细理论分析,包括基于内核方法和神经网的估计量,并提供了这些条件,这些条件在整个条件力矩模型中是一致,渐近正常和半呈效率的一致性,渐近正常和半呈效率的条件。我们还为基于内核和神经网络的品种提供了基于相同类型的变分重新构造的有效统计推断算法。最后,我们在一系列详细的合成实验中证明了我们提出的估计和推理算法的强劲性能。

The conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables, a prominent example being instrumental variable regression. A standard approach reduces the problem to a finite set of marginal moment conditions and applies the optimally weighted generalized method of moments (OWGMM), but this requires we know a finite set of identifying moments, can still be inefficient even if identifying, or can be theoretically efficient but practically unwieldy if we use a growing sieve of moment conditions. Motivated by a variational minimax reformulation of OWGMM, we define a very general class of estimators for the conditional moment problem, which we term the variational method of moments (VMM) and which naturally enables controlling infinitely-many moments. We provide a detailed theoretical analysis of multiple VMM estimators, including ones based on kernel methods and neural nets, and provide conditions under which these are consistent, asymptotically normal, and semiparametrically efficient in the full conditional moment model. We additionally provide algorithms for valid statistical inference based on the same kind of variational reformulations, both for kernel- and neural-net-based varieties. Finally, we demonstrate the strong performance of our proposed estimation and inference algorithms in a detailed series of synthetic experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源