论文标题

稳定stokes问题的最大规律性属性与通过$ l^r $ framework流过的cascade相关

The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in $L^r$-framework

论文作者

Neustupa, Tomáš

论文摘要

该论文处理了Stokes问题,与通过空间周期性轮廓级联流动的流动流动有关。我们使用[32]($ l^2 $ -framework中的最大规则属性)和[33]($ W^{1,r} $中的弱溶解度),并将最大规律性属性上的发现扩展到一般$ l^r $ -framework(以$ 1 <r <r <\ f infty $)。利用将一个空间周期$ω$减少到一个空间周期,通过三种类型的边界条件来提出问题:曲线周期性的条件$γ_0$和$γ_1$,$γ_{\ rm in} $ in} $和$γ_p$和$γ_p$的dirichlet边界条件和“ do do do do do do note” $ type of of $ quard of。我们表明,尽管域$ω$不是平滑的,并且在$ \partialΩ$的顶点中的不同类型的边界条件“相遇”,但所考虑的问题具有强大的解决方案,具有“平滑”数据的最大规则性属性。我们解释了“无所事事”边界条件在弱和强大解决方案中都满足的意义。

The paper deals with the Stokes problem, associated with a flow of a viscous incompressible fluid through a spatially periodic profile cascade. We use results from [32] (the maximum regularity property in the $L^2$-framework) and [33] (the weak solvability in $W^{1,r}$), and extend the findings on the maximum regularity property to the general $L^r$-framework (for $1<r<\infty$). Using the reduction to one spatial period $Ω$, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves $Γ_0$ and $Γ_1$, the Dirichlet boundary conditions on $Γ_{\rm in}$ and $Γ_P$ and an artificial "do nothing"-type boundary condition on $Γ_{\rm out}$ (see Fig. 1). We show that, although domain $Ω$ is not smooth and different types of boundary conditions "meet" in the vertices of $\partialΩ$, the considered problem has a strong solution with the maximum regularity property for "smooth" data. We explain the sense in which the "do nothing" boundary condition is satisfied for both weak and strong solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源