论文标题

用内核校准随机无线通道模型的一般方法

A General Method for Calibrating Stochastic Radio Channel Models with Kernels

论文作者

Bharti, Ayush, Briol, Francois-Xavier, Pedersen, Troels

论文摘要

当可能性函数棘手时,将随机无线电通道模型校准为新的测量数据是有挑战性的。该问题的标准方法涉及多径组件提取和聚类的复杂算法,随后,可以使用专用估计器获得模型参数的点估计。我们提出了使用近似贝叶斯计算的无似然校准方法。该方法基于最大平均差异,这是概率分布之间距离的概念。我们的方法不仅需要实现任何高分辨率或聚类算法的需求,而且也是自动的,因为它不需要用户的任何其他输入或手动预处理。它还具有在参数值上返回整个后验分布的优点,而不是简单的点估计。我们通过拟合两个不同的随机通道模型,即Saleh-Valenzuela模型和传播图模型来评估所提出的方法的性能,以模拟和测量数据。所提出的方法能够在模拟中精确估算两个模型的参数,以及应用于60 GHz室内测量数据时。

Calibrating stochastic radio channel models to new measurement data is challenging when the likelihood function is intractable. The standard approach to this problem involves sophisticated algorithms for extraction and clustering of multipath components, following which, point estimates of the model parameters can be obtained using specialized estimators. We propose a likelihood-free calibration method using approximate Bayesian computation. The method is based on the maximum mean discrepancy, which is a notion of distance between probability distributions. Our method not only by-passes the need to implement any high-resolution or clustering algorithm, but is also automatic in that it does not require any additional input or manual pre-processing from the user. It also has the advantage of returning an entire posterior distribution on the value of the parameters, rather than a simple point estimate. We evaluate the performance of the proposed method by fitting two different stochastic channel models, namely the Saleh-Valenzuela model and the propagation graph model, to both simulated and measured data. The proposed method is able to estimate the parameters of both the models accurately in simulations, as well as when applied to 60 GHz indoor measurement data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源