论文标题
Bargmann不变,几何阶段和递归参数化,
Bargmann Invariants, Geometric Phases and Recursive Parametrization with Majorana Fermions
论文作者
论文摘要
为Dirac费米子建立了量子机械式巴格曼不变式与几何阶段之间的广义联系。我们通过定义适当的量子机械射线和希尔伯特空间来扩展Majorana fermions的形式主义。然后,我们将Dirac和Majorana类型的Bargmann不变性与MajoraNa Neutminos的CP违规不变措施相关联,假设中微子具有Lepton数字违反了Majorana群众。然后,我们将递归参数化用于研究任何统一矩阵以包括Majoraana fermions,这对于研究中微子混合矩阵可能很有用。
A generalized connection between the quantum mechanical Bargmann invariants and the geometric phases was established for the Dirac fermions. We extend that formalism for the Majorana fermions by defining proper quantum mechanical ray and Hilbert spaces. We then relate both the Dirac and Majorana type Bargmann invariants to the rephasing invariant measures of CP violation with the Majorana neutrinos, assuming that the neutrinos have lepton number violating Majorana masses. We then generalize the recursive parametrization for studying any unitary matrices to include the Majorana fermions, which could be useful for studying the neutrino mixing matrix.