论文标题

使用卷积神经网络的多模式深度估计

Multi-Modal Depth Estimation Using Convolutional Neural Networks

论文作者

Siddiqui, Sadique Adnan, Vierling, Axel, Berns, Karsten

论文摘要

本文解决了从稀疏距离传感器数据和充满挑战的天气条件上的单个相机图像中提出的密集深度预测的问题。这项工作探讨了不同传感器模式(例如相机,雷达和激光雷达)通过采用深度学习方法来估算深度的重要性。尽管激光雷达具有比雷达更高的深度感应能力,并且已经与许多以前的作品中的相机图像集成在一起,但是使用CNN融合了稳健雷达距离数据和相机图像的深度估算并未得到太多探索。在这项工作中,提出了一个深层回归网络,它利用由编码器组成的转移学习方法,其中使用了高性能的预训练模型来初始化其以提取密集的特征,并用于提高采样并预测所需的深度。结果在使用Carla模拟器创建的Nuscenes,Kitti和合成数据集上证明了结果。此外,评估了从起重机上从起重机上捕获的顶级变焦相机图像,以估计起重机繁荣的距离,该起重机的距离载有重量,以显示安全至关重要的应用程序中的可用性。

This paper addresses the problem of dense depth predictions from sparse distance sensor data and a single camera image on challenging weather conditions. This work explores the significance of different sensor modalities such as camera, Radar, and Lidar for estimating depth by applying Deep Learning approaches. Although Lidar has higher depth-sensing abilities than Radar and has been integrated with camera images in lots of previous works, depth estimation using CNN's on the fusion of robust Radar distance data and camera images has not been explored much. In this work, a deep regression network is proposed utilizing a transfer learning approach consisting of an encoder where a high performing pre-trained model has been used to initialize it for extracting dense features and a decoder for upsampling and predicting desired depth. The results are demonstrated on Nuscenes, KITTI, and a Synthetic dataset which was created using the CARLA simulator. Also, top-view zoom-camera images captured from the crane on a construction site are evaluated to estimate the distance of the crane boom carrying heavy loads from the ground to show the usability in safety-critical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源