论文标题

能量尺度和宇宙通胀的统一出现

Unified Emergence of Energy Scales and Cosmic Inflation

论文作者

Kubo, Jisuke, Kuntz, Jeffrey, Lindner, Manfred, Rezacek, Jonas, Saake, Philipp, Trautner, Andreas

论文摘要

在寻求重力统一的标准模型时,可以利用经典的比例不变性来动态生成Planck Mass $ M_ \ Mathrm {pl} $。然后,Planck量表物理与Electroweak Symmetry Breaking $μ_H$的比例的关系需要进一步的解释。在本文中,我们提出了一个模型,该模型使用标量扇区中量表不变性的自发破坏作为两种量表的动态生成的统一起源。使用Gildener-Weinberg近似,只有一个标量获得$ v_s \ sim(10^{16-17})\,\ Mathrm {gev} $的真空期望值,从而辐射地生成$ m_ \ mathrm {pl}中微子质量$ m_n = y_m v_s \ sim 10^7 \,\ mathrm {gev} $。因此,通过包含I型Seesaw机制给活性SM中微子提供质量。此外,我们采用了不间断的$ Z_2 $对称性和$ Z_2 $ -ODD的右手Majorana Neutminos $χ$,这些中微子不参加中微子选项,并且能够通过Enflaton衰变产生正确的暗物质遗物丰度(主要是)。该模型还描述了宇宙通货膨胀,并且预计通货膨胀的CMB可观察物可以在$ r^2 $和线性混沌通货膨胀模型之间插值,因此很好地属于最强的实验约束。

In the quest for unification of the Standard Model with gravity, classical scale invariance can be utilized to dynamically generate the Planck mass $M_\mathrm{Pl}$. Then, the relation of Planck scale physics to the scale of electroweak symmetry breaking $μ_H$ requires further explanation. In this paper, we propose a model that uses the spontaneous breaking of scale invariance in the scalar sector as a unified origin for dynamical generation of both scales. Using the Gildener-Weinberg approximation, only one scalar acquires a vacuum expectation value of $v_S \sim (10^{16-17})\,\mathrm{GeV}$, thus radiatively generating $M_\mathrm{Pl} \approx β_S^{1/2} v_S$ and $μ_H$ via the neutrino option with right handed neutrino masses $m_N = y_M v_S \sim 10^7 \,\mathrm{GeV}$. Consequently, active SM neutrinos are given a mass with the inclusion of a type-I seesaw mechanism. Furthermore, we adopt an unbroken $Z_2$ symmetry and a $Z_2$-odd set of right-handed Majorana neutrinos $χ$ that do not take part in the neutrino option and are able to produce the correct dark matter relic abundance (dominantly) via inflaton decay. The model also describes cosmic inflation and the inflationary CMB observables are predicted to interpolate between those of $R^2$ and linear chaotic inflationary model and are thus well within the strongest experimental constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源