论文标题

阳性,结和$ Q,T $ -CATALAN数字

Positroids, knots, and $q,t$-Catalan numbers

论文作者

Galashin, Pavel, Lam, Thomas

论文摘要

我们将混合的Hodge结构与开放式阳性品种的共同体学(尤其是它们的betti数字超过$ \ Mathbb {C} $,并且点数与$ \ Mathbb {f} _Q $)与Khovanov- khovanov--rozansky链接链接的rozansky同源性。我们推断出,顶级开放式阳性品种的混合霍奇多项式由理性$ q,t $ -catalan数字提供。通过群集品种的奇怪lefschetz属性,这意味着有理$ Q,t $ Q,t $ -catalan数字的$ q,t $ - 符号对称性和非模式性属性。我们表明,$ q,t $ -smmetry现象是类别$ \ Mathcal {o} $的Koszul二元性的一种体现,并与开放的Richardson品种和Verma模块的扩展组讨论了关系。

We relate the mixed Hodge structure on the cohomology of open positroid varieties (in particular, their Betti numbers over $\mathbb{C}$ and point counts over $\mathbb{F}_q$) to Khovanov--Rozansky homology of associated links. We deduce that the mixed Hodge polynomials of top-dimensional open positroid varieties are given by rational $q,t$-Catalan numbers. Via the curious Lefschetz property of cluster varieties, this implies the $q,t$-symmetry and unimodality properties of rational $q,t$-Catalan numbers. We show that the $q,t$-symmetry phenomenon is a manifestation of Koszul duality for category $\mathcal{O}$, and discuss relations with open Richardson varieties and extension groups of Verma modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源