论文标题
在Wess-Zumino-witten模型的一些可集成变形上
On some integrable deformations of the Wess-Zumino-Witten model
论文作者
论文摘要
给出了一个二维Wess-Zumino-witten模型的一般二维WESS-Zumino-witten模型的集成性的谎言代数值。我们找到了这些方程式的简单解决方案,并确定了三种类型的新型非线性Sigma模型。其中之一是一个修改后的杨巴克斯特(Yang-Baxter)Sigma模型,该模型补充了Wess-Zumino-inten术语。
Lie algebra valued equations translating the integrability of a general two-dimensional Wess-Zumino-Witten model are given. We found simple solutions to these equations and identified three types of new integrable non-linear sigma models. One of them is a modified Yang-Baxter sigma model supplemented with a Wess-Zumino-Witten term.