论文标题
高分辨率概率降水预测用于气候模拟
High-resolution Probabilistic Precipitation Prediction for use in Climate Simulations
论文作者
论文摘要
准确的降水预测对于在不断变化的气候下允许对洪水或干旱风险的可靠警告很重要。但是,在本地规模上对降水进行值得信任的预测是当今天气和气候模型最困难的挑战之一。这是因为由于高分辨率模拟的显着计算成本,因此在模拟中无法在模拟中明确解决重要特征,例如单个云和高分辨率地形。气候模型通常以$ \ sim $ 50-100公里的分辨率运行,这不足以以令人满意的细节来表示本地降水事件。在这里,我们开发了一种基于气候模型可以很好地解决的特征进行概率降水预测的方法,并且对单个模型中使用的近似值不高度敏感。为了预测,我们将使用位置上气候模型的输出的时间化合物泊松分布。我们以粗分辨率$ \ sim $ 50公里使用地球系统模型的输出作为输入,并将统计模型训练,以$ \ sim $ 10 km的分辨率将威尔士的降水观测到降水观测。提供了贝叶斯的推论方案,以便可以使用吉布斯 - 无与伦比式 - 纤维化 - 纤维化片采样方案来推断化合物模型,从而使我们能够量化预测的不确定性。此外,我们在模型参数的后部样本上使用高斯过程回归,以推断出空间相干的模型,从而产生空间相干的降雨预测。我们通过在1999年12月31日的数据中培训5年的数据,并预测加的夫和威尔士20年以后的降水来说明我们的模型的预测性能。
The accurate prediction of precipitation is important to allow for reliable warnings of flood or drought risk in a changing climate. However, to make trust-worthy predictions of precipitation, at a local scale, is one of the most difficult challenges for today's weather and climate models. This is because important features, such as individual clouds and high-resolution topography, cannot be resolved explicitly within simulations due to the significant computational cost of high-resolution simulations. Climate models are typically run at $\sim$50-100 km resolution which is insufficient to represent local precipitation events in satisfying detail. Here, we develop a method to make probabilistic precipitation predictions based on features that climate models can resolve well and that is not highly sensitive to the approximations used in individual models. To predict, we will use a temporal compound Poisson distribution dependent on the output of climate models at a location. We use the output of Earth System models at coarse resolution $\sim$50 km as input and train the statistical models towards precipitation observations over Wales at $\sim$10 km resolution. A Bayesian inferential scheme is provided so that the compound-Poisson model can be inferred using a Gibbs-within-Metropolis-Elliptic-Slice sampling scheme which enables us to quantify the uncertainty of our predictions. In addition, we use a Gaussian process regressor on the posterior samples of the model parameters, to infer a spatially coherent model and hence to produce spatially coherent rainfall prediction. We illustrate the prediction performance of our model by training over 5 years of the data up to 31st December 1999 and predicting precipitation for 20 years afterwards for Cardiff and Wales.