论文标题

QGO:使用自动合成的可扩展量子电路优化

QGo: Scalable Quantum Circuit Optimization Using Automated Synthesis

论文作者

Wu, Xin-Chuan, Davis, Marc Grau, Chong, Frederic T., Iancu, Costin

论文摘要

量子计算的当前阶段是嘈杂的中间量子量子(NISQ)时代。在NISQ设备上,诸如CNOTS之类的两分门比单量门更嘈杂,因此将其计数最小化至关重要。量子电路合成是将任意统一分解为量子门序列的过程,可以用作优化工具,以产生较短的电路以提高整体电路保真度。但是,综合时间的分解时间随量子数的数量而成倍增长。结果,合成对于大量子尺度上的电路非常有用。 在本文中,我们提出了一个层次结构,逐块优化框架QGO,以进行量子电路优化。我们的方法允许指数成本优化,以扩展到大型电路。 QGO结合了分区和合成的组合:1)将电路划分为一系列独立电路块; 2)使用量子合成重新生成并优化每个块; 3)通过将所有块缝合在一起来重新组合最终电路。我们进行分析并显示了三种不同制度的忠诚度改善:实际设备上的小型电路,噪声模拟上的中型电路以及分析模型上的大型电路。使用一组NISQ基准测试,我们表明QGO可以将CNOT门的数量平均减少29.9%,而与T | KET等工业编译器相比,CNOT门的数量平均可以减少29.9%,最多可将CNOT门的数量减少50%。当在IBM雅典系统上执行时,较短的深度会导致高电路保真度。我们还演示了我们的QGO技术的可扩展性,以优化60个Qubits的电路。我们的技术是在大型电路链中成功使用和缩放合成的首次演示。总体而言,我们的方法对于直接掺入生产编译器工具链中是强大的。

The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthesis is a process of decomposing an arbitrary unitary into a sequence of quantum gates, and can be used as an optimization tool to produce shorter circuits to improve overall circuit fidelity. However, the time-to-solution of synthesis grows exponentially with the number of qubits. As a result, synthesis is intractable for circuits on a large qubit scale. In this paper, we propose a hierarchical, block-by-block optimization framework, QGo, for quantum circuit optimization. Our approach allows an exponential cost optimization to scale to large circuits. QGo uses a combination of partitioning and synthesis: 1) partition the circuit into a sequence of independent circuit blocks; 2) re-generate and optimize each block using quantum synthesis; and 3) re-compose the final circuit by stitching all the blocks together. We perform our analysis and show the fidelity improvements in three different regimes: small-size circuits on real devices, medium-size circuits on noise simulations, and large-size circuits on analytical models. Using a set of NISQ benchmarks, we show that QGo can reduce the number of CNOT gates by 29.9% on average and up to 50% when compared with industrial compilers such as t|ket>. When executed on the IBM Athens system, shorter depth leads to higher circuit fidelity. We also demonstrate the scalability of our QGo technique to optimize circuits of 60+ qubits. Our technique is the first demonstration of successfully employing and scaling synthesis in the compilation toolchain for large circuits. Overall, our approach is robust for direct incorporation in production compiler toolchains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源