论文标题
NGC 6946中的厚度圆盘分子气体分数
Thick disc molecular gas fraction in NGC 6946
论文作者
论文摘要
最近的几项研究加强了星系中厚分子盘以及动态冷的薄盘的存在。假设有两个组分分子盘,我们将NGC 6946的光盘建模为一个四组分系统,该系统由恒星,HI,薄盘分子气和厚盘分子气体组成。随后,我们设置了静水平衡的关节泊松玻尔兹曼方程,并以数值求解以获得不同的重型分量的三维密度分布。使用密度溶液和观察到的旋转曲线,我们进一步构建了分子盘的三维动力学模型,并连续产生模拟的CO光谱立方体和光谱宽度曲线。我们发现,对于不同假定的厚盘分子气体部分,模拟光谱宽度曲线有所不同。然后,为不同假定的厚盘分子气体分数产生了几个CO光谱宽度曲线,并与观察到的几个CO宽度曲线进行比较,以获得最合适的厚盘分子气体分数。我们发现,NGC 6946中厚的圆盘分子气体分数在其分子盘上基本保持恒定,平均值为$ 0.70 \ pm 0.09 $。我们还估计了NGC 6946中平面分子气的量。我们发现总分子气的$ \ sim 50 \%$在中部地区是额外的平面范围,而该馏分在分子盘边缘的$ \ sim 15 \%$。通过我们的方法,我们首次估计厚的圆盘分子气体馏分与以下KPC分辨率的外部星系中半径的函数。
Several recent studies reinforce the existence of a thick molecular disc in galaxies along with the dynamically cold thin disc. Assuming a two-component molecular disc, we model the disc of NGC 6946 as a four-component system consisting of stars, HI, thin disc molecular gas, and thick disc molecular gas in vertical hydrostatic equilibrium. Following, we set up the joint Poisson-Boltzmann equation of hydrostatic equilibrium and solve it numerically to obtain a three-dimensional density distribution of different baryonic components. Using the density solutions and the observed rotation curve, we further build a three-dimensional dynamical model of the molecular disc and consecutively produce simulated CO spectral cubes and spectral width profiles. We find that the simulated spectral width profiles distinguishably differ for different assumed thick disc molecular gas fractions. Several CO spectral width profiles are then produced for different assumed thick disc molecular gas fractions and compared with the observed one to obtain the best fit thick disc molecular gas fraction profile. We find that the thick disc molecular gas fraction in NGC 6946 largely remains constant across its molecular disc with a mean value of $0.70 \pm 0.09$. We also estimate the amount of extra-planar molecular gas in NGC 6946. We find $\sim 50\%$ of the total molecular gas is extra-planar at the central region, whereas this fraction reduces to $\sim 15\%$ at the edge of the molecular disc. With our method, for the first time, we estimate the thick disc molecular gas fraction as a function of radius in an external galaxy with sub-kpc resolution.