论文标题

量化分割不确定性对基于图像的模拟的未知影响

Quantifying the unknown impact of segmentation uncertainty on image-based simulations

论文作者

Krygier, Michael C., LaBonte, Tyler, Martinez, Carianne, Norris, Chance, Sharma, Krish, Collins, Lincoln N., Mukherjee, Partha P., Roberts, Scott A.

论文摘要

基于图像的模拟,使用3D图像计算物理量的使用根本依赖于图像分割来创建计算几何形状。但是,此过程引入了图像分割的不确定性,因为有多种不同的分割工具(基于手动和机器学习的工具)都会产生独特而有效的分割。首先,我们证明这些变化传播到物理模拟中,从而损害了由此产生的物理数量。其次,我们提出了一个迅速量化分割不确定性的一般框架。通过对分割不确定性概率图的创建和采样,我们系统地和客观地创建了物理数量的不确定性分布。我们表明,物理数量不确定性分布可以遵循正态分布,但是,在更复杂的物理模拟中,所得的不确定性分布可能是非直觉的,而且令人惊讶的是非平凡。我们还确定,在对图像分割敏感的情况下,简单地界定不确定性可能会失败。尽管我们的工作并没有消除细分不确定性,但它使得当前困扰基于图像的模拟的先前未知的不确定性范围可见,从而实现了更可靠的模拟。

Image-based simulation, the use of 3D images to calculate physical quantities, fundamentally relies on image segmentation to create the computational geometry. However, this process introduces image segmentation uncertainty because there is a variety of different segmentation tools (both manual and machine-learning-based) that will each produce a unique and valid segmentation. First, we demonstrate that these variations propagate into the physics simulations, compromising the resulting physics quantities. Second, we propose a general framework for rapidly quantifying segmentation uncertainty. Through the creation and sampling of segmentation uncertainty probability maps, we systematically and objectively create uncertainty distributions of the physics quantities. We show that physics quantity uncertainty distributions can follow a Normal distribution, but, in more complicated physics simulations, the resulting uncertainty distribution can be both nonintuitive and surprisingly nontrivial. We also establish that simply bounding the uncertainty can fail in situations that are sensitive to image segmentation. While our work does not eliminate segmentation uncertainty, it makes visible the previously unrecognized range of uncertainty currently plaguing image-based simulation, enabling more credible simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源