论文标题

在$ r^n $中的球形结空间的同质类型上

On the homotopy type of the spaces of spherical knots in $R^n$

论文作者

Turchin, Victor, Willwacher, Thomas

论文摘要

我们研究嵌入的空间$ s^m \ hookrightArrow r^n $和长嵌入$ r^m \ hookrightArrow r^n $的空间,即紧凑型集合以外的固定行为的嵌入。更确切地说,我们看一下将这些空间纳入浸入空间的同质纤维。我们发现与这些空间有关的天然纤维序列。我们还比较了$ l_ \ infty $ - $ - 代数,该图表在编码$ n-m \ geq 3 $时编码其合理同型类型。

We study the spaces of embeddings $S^m\hookrightarrow R^n$ and those of long embeddings $R^m\hookrightarrow R^n$, i.e. embeddings of a fixed behavior outside a compact set. More precisely we look at the homotopy fiber of the inclusion of these spaces to the spaces of immersions. We find a natural fiber sequence relating these spaces. We also compare the $L_\infty$-algebras of diagrams that encode their rational homotopy type, when the codimension $n-m\geq 3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源