论文标题
基于流的生成模型,用于学习歧管映射
Flow-based Generative Models for Learning Manifold to Manifold Mappings
论文作者
论文摘要
计算机视觉和机器学习中的许多测量或观察结果表现为非欧盟数据。尽管最近的建议(例如球形CNN)扩展了许多深神经网络体系结构以进行流动数据,这通常在性能方面提供了强烈的改进,但有关歧管数据的生成模型的文献非常稀少。部分原因是由于这种差距,也没有用于流动价值数据的模态转移/翻译模型,而基于生成模型的许多此类方法可用于自然图像。本文解决了这一差距,这是出于大脑成像的需求 - 在此过程中,我们将某些生成模型(以及模态传递的生成模型)的工作范围从自然图像扩展到具有歧管值测量的图像。我们的主要结果是设计了两流版本的发光(基于流动的可逆生成模型),该版本可以合成一种类型的歧管值测量的字段的信息。从理论方面来说,我们引入了三种可逆层来用于流动价值数据,它们不仅类似于它们在基于流量的生成模型中的功能(例如,发光),而且还保留了关键的好处(雅各布的决定因素易于计算)。对于实验,在人类Connectome项目(HCP)的一个大数据集中,我们可以显示出令人鼓舞的结果,在其中我们可以从扩散张量图像(DTI)中可靠,准确地重建一个方向分布功能(ODF)的大脑图像,其中后者的后者具有$ 5 \ tims $ faster $ faster $ faster $ faster faster $ faster faster faster of paber of Altexlult of Anglultal of Anglular devemense。
Many measurements or observations in computer vision and machine learning manifest as non-Euclidean data. While recent proposals (like spherical CNN) have extended a number of deep neural network architectures to manifold-valued data, and this has often provided strong improvements in performance, the literature on generative models for manifold data is quite sparse. Partly due to this gap, there are also no modality transfer/translation models for manifold-valued data whereas numerous such methods based on generative models are available for natural images. This paper addresses this gap, motivated by a need in brain imaging -- in doing so, we expand the operating range of certain generative models (as well as generative models for modality transfer) from natural images to images with manifold-valued measurements. Our main result is the design of a two-stream version of GLOW (flow-based invertible generative models) that can synthesize information of a field of one type of manifold-valued measurements given another. On the theoretical side, we introduce three kinds of invertible layers for manifold-valued data, which are not only analogous to their functionality in flow-based generative models (e.g., GLOW) but also preserve the key benefits (determinants of the Jacobian are easy to calculate). For experiments, on a large dataset from the Human Connectome Project (HCP), we show promising results where we can reliably and accurately reconstruct brain images of a field of orientation distribution functions (ODF) from diffusion tensor images (DTI), where the latter has a $5\times$ faster acquisition time but at the expense of worse angular resolution.