论文标题
来自单壁MOS的光致发光
Photoluminescence from Single-Walled MoS$_2$ Nanotubes Coaxially Grown on Boron Nitride Nanotubes
论文作者
论文摘要
单直径的氮化硼(BNNT)是在单直径的二硫化合物(MOS $ _2 $)二硫化物(MOS $ _2 $)纳米管(MOS $ _2 $)二硫化物(MOS $ _2 $)(BNNT)中生长的,这些纳米管(BNNT)是通过杂型碳纤维(通过单壁碳纳米管(SWCNT)进行了调查,并根据杂型尺合成的,并通过对系统进行了调查,并通过探测了单轴(SystematialityAiltiationaly),这些杂假钼(MOS $ _2 $)。在这项工作中观察到了由核心BNNT支撑的单壁Mos $ _2 $纳米管的强发光(PL),这证明了单壁MOS $ _2 $纳米管的直接带隙结构,直径约为6-7 nm。该观察结果与我们的DFT结果一致,即单壁MOS $ _2 $纳米管从间接间隙变为直接间隙半导体时,当纳米管的直径大于5 nm左右时。另一方面,当BNNT和MOS $ _2 $纳米管内部有SWCNT时,PL信号就会大大淬火。通过PL,XPS和Raman Spectroscopicy对SWCNT和单壁MOS $ _2 $纳米管之间的电荷传递和能量传递进行了检查。与单壁MOS $ _2 $纳米管不同,多壁MOS $ _2 $纳米管不会发出光。单壁和多壁MOS $ _2 $纳米管在谐振和非谐振拉曼光谱中都表现出不同的拉曼功能。使用BNNT作为模板组装杂型试管的方法为探索其他过渡金属二甲基元素纳米管的电子和光学特性提供了有效的方法。
Single- and multi-walled molybdenum disulfide (MoS$_2$) nanotubes have been coaxially grown on small diameter boron nitride nanotubes (BNNTs) which were synthesized from heteronanotubes by removing single-walled carbon nanotubes (SWCNTs), and systematically investigated by optical spectroscopy. The strong photoluminescence (PL) from single-walled MoS$_2$ nanotubes supported by core BNNTs is observed in this work, which evidences a direct band gap structure for single-walled MoS$_2$ nanotubes with around 6 - 7 nm in diameter. The observation is consistent with our DFT results that the single-walled MoS$_2$ nanotube changes from an indirect-gap to a direct-gap semiconductor when the diameter of a nanotube is more than around 5 nm. On the other hand, when there are SWCNTs inside the heteronanotubes of BNNTs and MoS$_2$ nanotubes, the PL signal is considerably quenched. The charge transfer and energy transfer between SWCNTs and single-walled MoS$_2$ nanotubes were examined through characterizations by PL, XPS, and Raman spectroscopy. Unlike the single-walled MoS$_2$ nanotubes, multi-walled MoS$_2$ nanotubes do not emit light. Single- and multi-walled MoS$_2$ nanotubes exhibit different Raman features in both resonant and non-resonant Raman spectra. The method of assembling heteronanotubes using BNNTs as templates provides an efficient approach for exploring the electronic and optical properties of other transition metal dichalcogenide nanotubes.