论文标题

较大的稀疏二次分配问题优化了使用量子退火和位纤维启发式算法

Larger Sparse Quadratic Assignment Problem Optimization Using Quantum Annealing and a Bit-Flip Heuristic Algorithm

论文作者

Kuramata, Michiya, Katsuki, Ryota, Nakata, Kazuhide

论文摘要

量子退火和D波量子退火器对解决组合优化问题的能力引起了极大的关注。为了解决其他类型的优化问题,有必要应用某些类型的数学转换。但是,由于量子位之间的连接稀少度,线性约束减少了可以在量子退火器中表示的问题的大小。例如,具有线性平等约束的二次分配问题(QAP)只能在量子退火器D-Wave优势中求解,该优势的尺寸为12,该优势具有5640 QUBITS。为了克服这一障碍,Ohzeki开发了一种放松线性平等约束的方法,并通过一些目标问题在数值上验证了该方法的有效性,但其他方法仍然无法解决。特别是,很难获得可行的解决方案,以解决具有严格约束的问题,例如QAP。因此,我们提出了一种通过将后处理的位纤维启发式算法应用于Ohzeki方法获得的解决方案,以通过量子退火来求解QAP。在数值实验中,我们通过提出的方法求解了稀疏的QAP。此稀疏QAP已用于电子商务网站上的项目列表等领域。我们成功地使用D-Wave优势成功地以高精度解决了尺寸19的QAP。我们还确认,通过良好的计算效率,该纤维启发式算法将不可行的解决方案移至附近可行的解决方案。

Quantum annealing and D-Wave quantum annealer attracted considerable attention for their ability to solve combinatorial optimization problems. In order to solve other type of optimization problems, it is necessary to apply certain kinds of mathematical transformations. However, linear constraints reduce the size of problems that can be represented in quantum annealers, owing to the sparseness of connections between qubits. For example, the quadratic assignment problem (QAP) with linear equality constraints can be solved only up to size 12 in the quantum annealer D-Wave Advantage, which has 5640 qubits. To overcome this obstacle, Ohzeki developed a method for relaxing the linear equality constraints and numerically verified the effectiveness of this method with some target problems, but others remain unsolvable. In particular, it is difficult to obtain feasible solutions to problems with hard constraints, such as the QAP. We therefore propose a method for solving the QAP with quantum annealing by applying a post-processing bit-flip heuristic algorithm to solutions obtained by the Ohzeki method. In a numerical experiment, we solved a sparse QAP by the proposed method. This sparse QAP has been used in areas such as item listing on an E-commerce website. We successfully solved a QAP of size 19 with high accuracy for the first time using D-Wave Advantage. We also confirmed that the bit-flip heuristic algorithm moves infeasible solutions to nearby feasible solutions in terms of Hamming distance with good computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源