论文标题
在大型系统中学习和平衡未知负载
Learning and balancing unknown loads in large-scale systems
论文作者
论文摘要
考虑一个相同的服务器池系统,其中具有指数分布的服务时间的任务是作为时间内元的泊松过程到达的。内部控制循环中使用了入学阈值,将传入的任务分配给服务器池,而在外部控制环中,学习方案会随着时间的推移调整该阈值,以使其与未知的系统负载保持一致。在多个服务器制度中,我们证明学习方案按时间间隔达到平衡,在该时间间隔中,每个服务器池的标准化负载是适当界限的,并且这会导致负载平衡分布。此外,当具有Coxian分布式服务时间的任务达到恒定速率,并且仅使用系统中的任务总数调整阈值时,我们就建立了类似的结果。本文开发的新型证明技术与传统的流体限制分析不同,可以处理第一个学习方案的快速变化,这是由占用过程的游览触发的,这些占用大小消失了。此外,我们的方法允许以Coxian分布式服务时间来表征系统的渐近行为,而不依赖详细状态描述符的流体极限。
Consider a system of identical server pools where tasks with exponentially distributed service times arrive as a time-inhomogenenous Poisson process. An admission threshold is used in an inner control loop to assign incoming tasks to server pools while, in an outer control loop, a learning scheme adjusts this threshold over time to keep it aligned with the unknown offered load of the system. In a many-server regime, we prove that the learning scheme reaches an equilibrium along intervals of time where the normalized offered load per server pool is suitably bounded, and that this results in a balanced distribution of the load. Furthermore, we establish a similar result when tasks with Coxian distributed service times arrive at a constant rate and the threshold is adjusted using only the total number of tasks in the system. The novel proof technique developed in this paper, which differs from a traditional fluid limit analysis, allows to handle rapid variations of the first learning scheme, triggered by excursions of the occupancy process that have vanishing size. Moreover, our approach allows to characterize the asymptotic behavior of the system with Coxian distributed service times without relying on a fluid limit of a detailed state descriptor.