论文标题
在派生和低维(CO)同源群体中,可转移的谎言lie代数与$ \ mathbf {n} _1 $和$ \ mathbf {n} _2 $相关
On derivations and low-dimensional (co)homology groups of pro-sovable Lie algebras associated with $\mathbf{n}_1$ and $\mathbf{n}_2$
论文作者
论文摘要
在本文中,我们描述了两个$ \ mathbb {n} $的推导,分级无限二维谎言代数$ \ mathbf {n} _1 $和$ \ mathbf {n} _1 $ affine kats-moody kats-moody algebras $ a^{(1)然后,我们构建了所有可溶解的谎言代数,其潜在的nilpotent理想为$ \ mathbf {n} _1 $和$ \ mathbf {n} _2 $。对于这些类别的两个特定代表,计算低维(CO)同源组。
In the paper we describe the derivations of two $\mathbb{N}$-graded infinity-dimensional Lie algebras $\mathbf{n}_1$ and $\mathbf{n}_1$ what are positive parts of affine Kats-Moody algebras $A^{(1)}_1$ and $A^{(2)}_2$, respectively. Then we construct all pro-solvable Lie algebras whose potential nilpotent ideals are $\mathbf{n}_1$ and $\mathbf{n}_2$. For two specific representatives of these classes low-dimensional (co)homology groups are computed.