论文标题

在Q运算符和XXZ模型的频谱上

On the Q operator and the spectrum of the XXZ model at root of unity

论文作者

Miao, Yuan, Lamers, Jules, Pasquier, Vincent

论文摘要

Spin-1/2 Heisenberg XXZ链是一种范式量子整合模型。尽管可以通过ANSATZ技术准确地求解,但仍存在有关各向异性统一值的频谱的开放问题。我们从与复杂自旋辅助空间相关的两参数转移矩阵中以任意各向异性的方式构造百特的Q运算符。该转移矩阵的分解提供了简单的传递矩阵融合和wronskian关系的证明。在统一的根部截断使我们可以根据有限维矩阵明确构建Q运算符。从其分解中,我们得出了截断的融合和Wronskian关系以及以前曾猜想过的插值公式。我们阐明了在统一根部的六个vertex转移矩阵的光谱中的Fabricius-McCoy(FM)字符串和指数变性。使用半微粒辅助表示,我们为所有统一根提供了FM字符串的创建和an灭操作员的猜想。我们将发现与热力学限制中的“弦乐双重双重性”联系起来,从而导致了FM弦乐中心的假想部分的猜想,并具有潜在的应用到平衡外物理学的应用。

The spin-1/2 Heisenberg XXZ chain is a paradigmatic quantum integrable model. Although it can be solved exactly via Bethe ansatz techniques, there are still open issues regarding the spectrum at root of unity values of the anisotropy. We construct Baxter's Q operator at arbitrary anisotropy from a two-parameter transfer matrix associated to a complex-spin auxiliary space. A decomposition of this transfer matrix provides a simple proof of the transfer matrix fusion and Wronskian relations. At root of unity a truncation allows us to construct the Q operator explicitly in terms of finite-dimensional matrices. From its decomposition we derive truncated fusion and Wronskian relations as well as an interpolation-type formula that has been conjectured previously. We elucidate the Fabricius-McCoy (FM) strings and exponential degeneracies in the spectrum of the six-vertex transfer matrix at root of unity. Using a semicyclic auxiliary representation we give a conjecture for creation and annihilation operators of FM strings for all roots of unity. We connect our findings with the 'string-charge duality' in the thermodynamic limit, leading to a conjecture for the imaginary part of the FM string centres with potential applications to out-of-equilibrium physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源