论文标题
深度学习和高谐波产生
Deep learning and high harmonic generation
论文作者
论文摘要
使用机器学习,我们探讨了当应用于高谐波生成(HHG)方案时,各种深神经网络(NN)的实用性。首先,我们训练NNS,以基于随机产生的参数集(激光脉冲强度,核距离距离和分子方向)的集合来预测DI-和Ti-Triotomic系统降低模型的HHG发射的时间依赖性偶极子和光谱。这些网络曾经训练过,是快速生成系统HHG光谱的有用工具。同样,我们训练了NNS来解决反问题 - 基于HHG光谱或偶极加速度数据来确定分子参数。然后,这些类型的网络可以用作光谱工具,以反转HHG光谱,以恢复系统的基本物理参数。接下来,我们证明可以将转移学习应用于我们的网络,以扩大网络的适用性范围,只有少量的新测试用例添加到我们的培训集中。最后,我们演示了可用于按类型进行分子分类的NNS:di-或timomic,对称或不对称的NN,其中我们甚至可以依靠相当简单的完全连接的神经网络。通过实验数据进行培训的前景,这些NN拓扑提供了一组新型的光谱工具,可以将其纳入HHG实验中。
Using machine learning, we explore the utility of various deep neural networks (NN) when applied to high harmonic generation (HHG) scenarios. First, we train the NNs to predict the time-dependent dipole and spectra of HHG emission from reduced-dimensionality models of di- and triatomic systems based of on sets of randomly generated parameters (laser pulse intensity, internuclear distance, and molecular orientation). These networks, once trained, are useful tools to rapidly generate the HHG spectra of our systems. Similarly, we have trained the NNs to solve the inverse problem - to determine the molecular parameters based on HHG spectra or dipole acceleration data. These types of networks could then be used as spectroscopic tools to invert HHG spectra in order to recover the underlying physical parameters of a system. Next, we demonstrate that transfer learning can be applied to our networks to expand the range of applicability of the networks with only a small number of new test cases added to our training sets. Finally, we demonstrate NNs that can be used to classify molecules by type: di- or triatomic, symmetric or asymmetric, wherein we can even rely on fairly simple fully connected neural networks. With outlooks toward training with experimental data, these NN topologies offer a novel set of spectroscopic tools that could be incorporated into HHG experiments.