论文标题

成像中子捕获横截面:基于机器学习技术的I-TED概念证明和未来前景

Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques

论文作者

Babiano-Suárez, V., Lerendegui-Marco, J., Balibrea-Correa, J., Caballero, L., Calvo, D., Ladarescu, I., Domingo-Pardo, C., Calviño, F., Casanovas, A., Tarifeño-Saldivia, A., Alcayne, V., Guerrero, C., Millán-Callado, M. A., González, M. T. Rodríguez, Barbagallo, M., Aberle, O., Amaducci, S., Andrzejewski, J., Audouin, L., Bacak, M., Bennett, S., Berthoumieux, E., Billowes, J., Bosnar, D., Brown, A., Busso, M., Caamaño, M., Calviani, M., Cano-Ott, D., Cerutti, F., Chiaveri, E., Colonna, N., Cortés, G., Cortés-Giraldo, M. A., Cosentino, L., Cristallo, S., Damone, L. A., Davies, P. J., Diakaki, M., Dietz, M., Dressler, R., Ducasse, Q., Dupont, E., Durán, I., Eleme, Z., Fern\', B., ez-Domínguez, Ferrari, A., Finocchiaro, P., Furman, V., Göbel, K., Garg, R., Gawlik, A., Gilardoni, S., Gonçalves, I. F., González-Romero, E., Gunsing, F., Harada, H., Heinitz, S., Heyse, J., Jenkins, D. G., Junghans, A., Käppeler, F., Kadi, Y., Kimura, A., Knapova, I., Kokkoris, M., Kopatch, Y., Krtička, M., Kurtulgil, D., Lederer-Woods, C., Leeb, H., Lonsdale, S. J., Macina, D., Manna, A., Martinez, T., Masi, A., Massimi, C., Mastinu, P., Mastromarco, M., Maugeri, E. A., Mazzone, A., Mendoza, E., Mengoni, A., Michalopoulou, V., Milazzo, P. M., Mingrone, F., Moreno-Soto, J., Musumarra, A., Negret, A., Ogállar, F., Oprea, A., Patronis, N., Pavlik, A., Perkowski, J., Persanti, L., Petrone, C., Pirovano, E., Porras, I., Praena, J., Quesada, J. M., Ramos-Doval, D., Rauscher, T., Reifarth, R., Rochman, D., Rubbia, C., Sabaté-Gilarte, M., Saxena, A., Schillebeeckx, P., Schumann, D., Sekhar, A., Smith, A. G., Sosnin, N. V., Sprung, P., Stamatopoulos, A., Tagliente, G., Tain, J. L., Tassan-Got, L., Thomas, Th., Torres-Sánchez, P., Tsinganis, A., Ulrich, J., Urlass, S., Valenta, S., Vannini, G., Variale, V., Vaz, P., Ventura, A., Vescovi, D., Vlachoudis, V., Vlastou, R., Wallner, A., Woods, P. J., Wright, T., Žugec, P.

论文摘要

I-TED是一种创新的检测系统,它利用康普顿成像技术在($ n,γ$)横截面测量中实现了较高的信噪比,使用飞行时间技术。这项工作提出了对高分辨率飞行时间实验的I-TED设备的首次实验验证,并首次证明了对背景排斥的概念。为此,在Cern N \ _toF上使用I-TED示范器在Cern N \ _tof上测量了$^{197} $ au($ n,γ$)和$^{56} $ fe($ n,γ$)的反应,仅基于仅基于三个位置敏感探测器的I-TED示范器。两个\ CD探测器也用于基准I-TED的性能。为这项研究构建的I-TED原型显示,$ \ sim $ 3的检测灵敏度比最先进的\ cds检测器高于$ \ sim $ 10〜KEV中子的天体物理兴趣范围。本文还探讨了最终的I-TED阵列可实现进一步增强性能的观点,该阵列由二十个位置敏感探测器和基于机器学习技术的新分析方法组成。

i-TED is an innovative detection system which exploits Compton imaging techniques to achieve a superior signal-to-background ratio in ($n,γ$) cross-section measurements using time-of-flight technique. This work presents the first experimental validation of the i-TED apparatus for high-resolution time-of-flight experiments and demonstrates for the first time the concept proposed for background rejection. To this aim both $^{197}$Au($n,γ$) and $^{56}$Fe($n, γ$) reactions were measured at CERN n\_TOF using an i-TED demonstrator based on only three position-sensitive detectors. Two \cds detectors were also used to benchmark the performance of i-TED. The i-TED prototype built for this study shows a factor of $\sim$3 higher detection sensitivity than state-of-the-art \cds detectors in the $\sim$10~keV neutron energy range of astrophysical interest. This paper explores also the perspectives of further enhancement in performance attainable with the final i-TED array consisting of twenty position-sensitive detectors and new analysis methodologies based on Machine-Learning techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源