论文标题
RG可集成的$ \ Mathcal {E} $ - 模型的流量
RG flow of integrable $\mathcal{E}$-models
论文作者
论文摘要
我们计算与Poisson-lie对称性的可集成$σ$模型的一环RG流。它们的特征是带有$ 2N $简单的杆/零的扭曲功能,而无穷大。因此,他们在统一框架中捕获了许多已知的整合变形,该框架在4D Chern-Simons理论中具有几何解释。我们发现这些模型是一环肾小函数,并为扭曲函数流提供了非常简单的表达。在两个循环中,只有$ n $ = 1的型号是可统一的。我们的结果适用于半元组歧管上的$λ$ - 定义,我们的结果重现了文献中的$β$ - 功能。
We compute the one- and two-loop RG flow of integrable $σ$-models with Poisson-Lie symmetry. They are characterised by a twist function with $2N$ simple poles/zeros and a double pole at infinity. Hence, they capture many of the known integrable deformations in a unified framework, which has a geometric interpretation in terms of surface defects in a 4D Chern-Simons theory. We find that these models are one-loop renormalisable and present a very simple expression for the flow of the twist function. At two loops only models with $N$=1 are renormalisable. Applied to the $λ$-deformation on a semisimple group manifold, our results reproduce the $β$-functions in the literature.