论文标题

Shineon:实用的基于视频的虚拟服装的照明设计选择

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on

论文作者

Kuppa, Gaurav, Jong, Andrew, Liu, Vera, Liu, Ziwei, Moh, Teng-Sheng

论文摘要

Virtual Try-On引起了人们的兴趣,作为一项神经渲染基准任务,以评估复杂的对象传输和场景组成。虚拟服装尝试的最新作品具有许多可能的建筑和数据表示选择。但是,他们对量化每种选择的孤立视觉效果几乎没有明确的清晰度,也没有指定超参数细节,这些细节是实验繁殖的关键。我们的工作Shineon从自下而上的方法中处理了一项尝试任务,并旨在阐明每个实验的视觉和定量效果。我们构建了一系列科学实验,以隔离虚拟服装的视频合成中的有效设计选择。具体而言,我们研究了不同姿势注释,自我发项层放置以及激活功能对视频虚拟试验的定量和定性性能的影响。我们发现密集的注释不仅可以增强面部细节,还可以减少记忆使用和训练时间。接下来,我们发现注意力层提高了面部和颈部质量。最后,我们表明,尽管诸如Swish和Sine之类的更新激活吸引了人们的吸引力,但GELU和RELU激活功能在我们的实验中是最有效的。我们将发布一个组织良好的代码库,超参数和模型检查点,以支持结果的可重复性。我们希望我们的广泛的实验和代码能够在视频虚拟尝试中大大为未来的设计选择提供信息。我们的代码可以通过https://github.com/andrewjong/shineon-virtual-tryon访问。

Virtual try-on has garnered interest as a neural rendering benchmark task to evaluate complex object transfer and scene composition. Recent works in virtual clothing try-on feature a plethora of possible architectural and data representation choices. However, they present little clarity on quantifying the isolated visual effect of each choice, nor do they specify the hyperparameter details that are key to experimental reproduction. Our work, ShineOn, approaches the try-on task from a bottom-up approach and aims to shine light on the visual and quantitative effects of each experiment. We build a series of scientific experiments to isolate effective design choices in video synthesis for virtual clothing try-on. Specifically, we investigate the effect of different pose annotations, self-attention layer placement, and activation functions on the quantitative and qualitative performance of video virtual try-on. We find that DensePose annotations not only enhance face details but also decrease memory usage and training time. Next, we find that attention layers improve face and neck quality. Finally, we show that GELU and ReLU activation functions are the most effective in our experiments despite the appeal of newer activations such as Swish and Sine. We will release a well-organized code base, hyperparameters, and model checkpoints to support the reproducibility of our results. We expect our extensive experiments and code to greatly inform future design choices in video virtual try-on. Our code may be accessed at https://github.com/andrewjong/ShineOn-Virtual-Tryon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源