论文标题

使用持续同源性的光子带结构设计

Photonic band structure design using persistent homology

论文作者

Leykam, Daniel, Angelakis, Dimitris G

论文摘要

持续同源性的机器学习技术通过在一系列特征尺度上计算其拓扑特征来对复杂的系统或数据集进行分类。对应用持久同源性来表征物理系统(例如旋转模型和多等级纠缠状态)的兴趣越来越大。在这里,我们建议持久的同源性作为表征和优化周期光子介质的带结构的工具。我们以蜂窝光子晶格模型为例,我们展示了持久的同源性如何能够可靠地分类各种拓扑结构范围的拓扑结构范围,包括“护城河频段”和“多蛇展分散关系”,从而控制量子散发器的性质。该方法对于更复杂的系统(例如光子晶体和Moire超级晶格)的自动设计很有希望。

The machine learning technique of persistent homology classifies complex systems or datasets by computing their topological features over a range of characteristic scales. There is growing interest in applying persistent homology to characterize physical systems such as spin models and multiqubit entangled states. Here we propose persistent homology as a tool for characterizing and optimizing band structures of periodic photonic media. Using the honeycomb photonic lattice Haldane model as an example, we show how persistent homology is able to reliably classify a variety of band structures falling outside the usual paradigms of topological band theory, including "moat band" and multi-valley dispersion relations, and thereby control the properties of quantum emitters embedded in the lattice. The method is promising for the automated design of more complex systems such as photonic crystals and Moire superlattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源