论文标题

自动驾驶的声明性变质测试框架

A Declarative Metamorphic Testing Framework for Autonomous Driving

论文作者

Deng, Yao, Zheng, Xi, Zhang, Tianyi, Lou, Guannan, liu, Huai, Kim, Miryung, Chen, Tsong Yueh

论文摘要

自动驾驶引起了行业和学术界的关注。目前,深度神经网络(DNN)广泛用于自主驾驶中的感知和控制。但是,自动驾驶汽车造成的几起致命事故引起了人们对自动驾驶模型的严重安全问题。最近的一些研究成功地使用了变质测试技术来检测一些普遍使用的自主驾驶模型中的数千个潜在问题。但是,先前的研究仅限于一小部分变质关系,这些关系不反映丰富的现实交通情况,也无法自定义。本文介绍了一种新型的基于规则的变质测试框架,称为RMT。 RMT提供了具有自然语言语法的规则模板,使用户可以根据现实世界流量规则和域知识灵活地指定一组丰富的测试方案。 RMT会使用基于NLP的规则解析器自动解析人体编写的规则,以变质关系,该规则解析器参考本体论列表,并生成具有各种图像转换引擎的测试用例。我们评估了三种自动驾驶模型的RMT。 RMT通过一组丰富的变质关系,检测到了大量的异常模型预测,这些预测未通过先前的工作检测到。通过对亚马逊机械土耳其人的大规模人类研究,我们进一步证实了由RMT产生的测试案例的真实性以及检测到的异常模型预测的有效性。

Autonomous driving has gained much attention from both industry and academia. Currently, Deep Neural Networks (DNNs) are widely used for perception and control in autonomous driving. However, several fatal accidents caused by autonomous vehicles have raised serious safety concerns about autonomous driving models. Some recent studies have successfully used the metamorphic testing technique to detect thousands of potential issues in some popularly used autonomous driving models. However, prior study is limited to a small set of metamorphic relations, which do not reflect rich, real-world traffic scenarios and are also not customizable. This paper presents a novel declarative rule-based metamorphic testing framework called RMT. RMT provides a rule template with natural language syntax, allowing users to flexibly specify an enriched set of testing scenarios based on real-world traffic rules and domain knowledge. RMT automatically parses human-written rules to metamorphic relations using an NLP-based rule parser referring to an ontology list and generates test cases with a variety of image transformation engines. We evaluated RMT on three autonomous driving models. With an enriched set of metamorphic relations, RMT detected a significant number of abnormal model predictions that were not detected by prior work. Through a large-scale human study on Amazon Mechanical Turk, we further confirmed the authenticity of test cases generated by RMT and the validity of detected abnormal model predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源