论文标题
机器人血管导航中的基于图像的腔内接触力监测
Image-based Intraluminal Contact Force Monitoring in Robotic Vascular Navigation
论文作者
论文摘要
栓塞,中风,缺血性病变和穿孔在血管内干预措施中仍然存在重大关注点。刀具与动脉相互作用的血管内感应是最大程度地减少这种并发症并增强导航安全性是有利的。由于缺乏血管内接触技术,目前腔内信息受到限制。我们使用血管机器人导航中的基于图像的估计方法对腔内工具的相互作用进行监测。提出的基于图像的方法使用成像数据对工具进行了连续的有限元模拟,以估算沿工具船尾壁相互作用的多点力。我们实施了成像算法来检测和跟踪触点,并计算姿势测量值。该模型是根据刀具长度上的非线性束元件和弯曲刚度曲线构建的。在主动脉动脉的远程插管过程中,腔内监测实现了跟踪局部接触力,在动脉壁上构建力图表并估计工具结构应力。结果表明,即使使用低插入力,高风险也可能发生。介绍的在线监视系统可深入了解血管内工具的腔内行为,非常适合于临床医生的术中视觉指导,对血管程序的机器人控制以及介入设备设计的研究。
Embolization, stroke, ischaemic lesion, and perforation remain significant concerns in endovascular interventions. Intravascular sensing of tool interaction with the arteries is advantageous to minimize such complications and enhance navigation safety. Intraluminal information is currently limited due to the lack of intravascular contact sensing technologies. We present monitoring of the intraluminal tool interaction with the arterial wall using an image-based estimation approach within vascular robotic navigation. The proposed image-based method employs continuous finite element simulation of the tool using imaging data to estimate multi-point forces along tool-vessel wall interaction. We implemented imaging algorithms to detect and track contacts, and compute pose measurements. The model is constructed based on the nonlinear beam element and flexural rigidity profile over the tool length. During remote cannulation of aortic arteries, intraluminal monitoring achieved tracking local contact forces, building a contour map of force on the arterial wall and estimating tool structural stress. Results suggest that high risk intraluminal forces may happen even with low insertion force. The presented online monitoring system delivers insight into the intraluminal behavior of endovascular tools and is well suited for intraoperative visual guidance for the clinician, robotic control of vascular procedures and research on interventional device design.