论文标题
评论“量子Fisher信息流量和开放系统的非马克维亚过程”
Comment on "Quantum Fisher information flow and non-Markovian processes of open systems"
论文作者
论文摘要
在[Phys。 Rev. A 82,042103(2010)],作者表明,“对于时间局部形式的一类非马克维亚主方程”,量子渔民信息(QFI)流可以被分解为对应于与不同耗散通道相对应的添加剂。但是,本文并未指定其对QFI流的分析分解有效的非马克维亚时间分离主方程的类别。在这里,我们表明必须提出几种假设才能达到参考的中心结果。 \ cite {luwsun10},该{luwsun10}对于狭窄的密度运算符$ρ(θ; t)$和量子Fisher信息$ \ MATHCAL {f}(θ; T)$以及在严格的时段主体方程中有效。更确切地说,在参考文献中获得的QFI流的分解。 \ cite {luwsun10}在本文未提及的两个条件下有效:(i)$ \ frac {d} {dt} {dt} \ left(\ frac {\ frac {\ partialρ} {\ partialθ}} \ partialθ} \ right) ρ} {dt} \ right)$; (ii)$ \ frac {\ partial h} {\partialθ} = 0 $,$ \ frac {\ partialγ_i} {\partialθ} = 0 $,$ \ frac {\ frac {\ partial a_i} $γ_i(t)$,以及出现在非马克维亚时间局部主方程中的lindblad运算符$ a_i(t)$不取决于定义量子渔民信息的参数$θ$。
In [Phys. Rev. A 82, 042103 (2010)], the authors showed that "for a class of the non-Markovian master equations in time-local forms", the quantum Fisher information (QFI) flow can be decomposed into additive subflows corresponding to different dissipative channels. However, the paper does not specify the class of non-Markovian time-local master equations for which their analytic decomposition of the QFI flow is valid. Here we show that several suppositions have to be made in order to reach the central result of Ref. \cite{luwsun10}, which appears to be valid for a narrow class of density operators $ρ(θ;t)$ and quantum Fisher information $\mathcal{F}(θ;t)$, and under strict conditions on the time-local master equation. More precisely, the decomposition of the QFI flow obtained in Ref. \cite{luwsun10} is valid under two conditions not mentioned in the paper: (i) $\frac{d}{dt} \left( \frac{\partial ρ}{\partial θ} \right)=$ $\frac{\partial}{\partial θ} \left( \frac{d ρ}{dt} \right)$; (ii) $\frac{\partial H}{\partial θ}=0$, $\frac{\partial γ_i}{\partial θ}=0$, $\frac{\partial A_i}{\partial θ}=0$, meaning that the Hamiltonian $H(t)$, the decay rates $γ_i(t)$, and the Lindblad operators $A_i(t)$ appearing in the non-Markovian time-local master equation have to not depend on the parameter $θ$ about which the quantum Fisher information is defined.