论文标题

Emlight:通过球形分布近似的照明估计

EMLight: Lighting Estimation via Spherical Distribution Approximation

论文作者

Zhan, Fangneng, Zhang, Changgong, Yu, Yingchen, Chang, Yuan, Lu, Shijian, Ma, Feiying, Xie, Xuansong

论文摘要

来自单个图像的照明估计对于3D渲染至关重要,并且在计算机视觉和计算机图形研究社区中进行了广泛的研究。另一方面,现有的作品通过回归光参数或生成通常很难优化或倾向于产生不准确预测的照明图来估计照明。我们提出了Earth Mover Light(Emlight),这是一个照明估计框架,利用回归网络和神经投影仪进行准确的照明估计。我们将照明图分解为球形光分布,光强度和环境项,并将照明估计定义为三个照明组件的参数回归任务。在地球搬运工距离的驱动下,我们设计了一种新型的球形推动者的损失,该损失通过利用球形分布的微妙之处来准确地回归光分布参数。在预测的球形分布,光强度和环境项的指导下,神经投影仪以逼真的光频率合成全景照明图。广泛的实验表明,与最先进的方法相比,Emlight可以实现准确的照明估计,而3D对象中产生的重新构成表现出较高的合理性和忠诚度。

Illumination estimation from a single image is critical in 3D rendering and it has been investigated extensively in the computer vision and computer graphic research community. On the other hand, existing works estimate illumination by either regressing light parameters or generating illumination maps that are often hard to optimize or tend to produce inaccurate predictions. We propose Earth Mover Light (EMLight), an illumination estimation framework that leverages a regression network and a neural projector for accurate illumination estimation. We decompose the illumination map into spherical light distribution, light intensity and the ambient term, and define the illumination estimation as a parameter regression task for the three illumination components. Motivated by the Earth Mover distance, we design a novel spherical mover's loss that guides to regress light distribution parameters accurately by taking advantage of the subtleties of spherical distribution. Under the guidance of the predicted spherical distribution, light intensity and ambient term, the neural projector synthesizes panoramic illumination maps with realistic light frequency. Extensive experiments show that EMLight achieves accurate illumination estimation and the generated relighting in 3D object embedding exhibits superior plausibility and fidelity as compared with state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源