论文标题

最大的$a_α$ - 图形值的总和

On the sum of the largest $A_α$-eigenvalues of graphs

论文作者

Lin, Zhen, Miao, Lianying, Guo, Shuguang

论文摘要

For every real $0\leq α\leq 1$, Nikiforov defined the $A_α$-matrix of a graph $G$ as $A_α(G)=αD(G)+(1-α)A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the degree diagonal matrix of a graph $G$, respectively. $a_α(g)$的特征值称为$ g $的$a_α$ eigenValues。令$ s_k(a_α(g))$为$ k $a_α$ -eigenValues $ g $的总和。在本文中,我们在$ s_k(a_α(g))$上介绍了几个上限和下限,并在某些情况下表征了极端图,可以将其视为$ k $最大的邻接矩阵特征值和无标志性laplacian laplacian矩阵的共同概括。此外,还提供了$ S_K(A_α(G))$的某些图形操作。

For every real $0\leq α\leq 1$, Nikiforov defined the $A_α$-matrix of a graph $G$ as $A_α(G)=αD(G)+(1-α)A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the degree diagonal matrix of a graph $G$, respectively. The eigenvalues of $A_α(G)$ are called the $A_α$-eigenvalues of $G$. Let $S_k(A_α(G))$ be the sum of $k$ largest $A_α$-eigenvalues of $G$. In this paper, we present several upper and lower bounds on $S_k(A_α(G))$ and characterize the extremal graphs for certain cases, which can be regard as a common generalization of the sum of $k$ largest eigenvalues of adjacency matrix and signless Laplacian matrix of graphs. In addition, some graph operations on $S_k(A_α(G))$ are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源