论文标题
显微镜仪器描述和验证
MICROSCOPE instrument description and validation
论文作者
论文摘要
考虑到要在卫星上测量的特定加速度范围,已为显微镜任务开发了专用的加速度计。考虑到一个Micro-G,甚至是该仪器的全部范围,它导致了定制的概念和高性能电子设备,用于加速度计测试量的传感和伺服传动。除了非常精确的几何传感器核心外,高性能电子结构还可以测量施加到测试量的弱静电力和扭矩。一组电容式传感器提供了测试物质在二氧化硅制造的非常稳定的金涂层方面的位置和态度。施加在每个测试质量周围的电极上的电压得到了精心控制以产生足够的电场,因此测试质量上的静电压力。相对于仪器结构,该场保持了一动不动的测试量。实施数字控制定律是为了使仪器操作灵活性和弱位置传感器噪声。这些电子产品既提供了显微镜测试的一般相对论的科学数据,又提供了无卫星阻力和态度控制系统(DFAC)的数据。
Dedicated accelerometers have been developed for the MICROSCOPE mission taking into account the specific range of acceleration to be measured on board the satellite. Considering one micro-g and even less as the full range of the instrument, leads to a customized concept and a high performance electronics for the sensing and servo-actuations of the accelerometer test-masses. In addition to a very accurate geometrical sensor core, a high performance electronics architecture provides the measurement of the weak electrostatic forces and torques applied to the test-masses. A set of capacitive sensors delivers the position and the attitude of the test-mass with respect to a very steady gold coated cage made in silica. The voltages applied on the electrodes surrounding each test-mass are finely controlled to generate the adequate electrical field and so the electrostatic pressures on the test-mass. This field maintains the test-mass motionless with respect to the instrument structure. Digital control laws are implemented in order to enable instrument operation flexibility and a weak position sensor noise. These electronics provide both the scientific data for MICROSCOPE's test of General Relativity and the data for the satellite drag-free and attitude control system (DFACS).