论文标题

通过图形laplacian denoising提高大脑连通性状态的J差异

Improving J-divergence of brain connectivity states by graph Laplacian denoising

论文作者

Cattai, Tiziana, Scarano, Gaetano, Corsi, Marie-Constance, Bassett, Danielle S., Fallani, Fabrizio De Vico, Colonnese, Stefania

论文摘要

功能连通性(FC)可以表示为网络,并且经常用于更好地理解复杂任务的神经基础,例如脑部计算机接口(BCIS)中的运动成像(MI)检测。但是,连通性估计中的错误可能会影响检测性能。在这项工作中,我们解决了确定共同连通性估计以提高不同连通性状态的可检测性的问题。具体而言,我们提出了一种作用于网络图Laplacian的denoising算法,该算法利用了最新的图形信号处理结果。此外,我们得出了詹森(Jensen)差异的新型表述,以在不同状态下为deno的拉普拉斯(Laplacian)。合成数据上的数值模拟表明,denoising方法改善了与不同任务条件相对应的连通性模式的差异。此外,我们将Laplacian Denoising技术应用于从MI-BCI实验中记录的实际脑电图数据估计的大脑网络。使用我们新颖的J-Divergence表述,我们能够量化运动成像和静止状态中FC网络之间的距离,并了解每个Laplacian变量对两个状态之间J-Divergence的贡献。对实际Mi-BCI EEG数据的实验结果表明,拉普拉斯(Laplacian denoising)改善了运动成像和静止心理状态的分离,并缩短了连通性估计所需的时间间隔。我们得出的结论是,该方法显示出对连通性状态的强大检测的希望,同时呼吁实时BCI应用程序实施。

Functional connectivity (FC) can be represented as a network, and is frequently used to better understand the neural underpinnings of complex tasks such as motor imagery (MI) detection in brain-computer interfaces (BCIs). However, errors in the estimation of connectivity can affect the detection performances. In this work, we address the problem of denoising common connectivity estimates to improve the detectability of different connectivity states. Specifically, we propose a denoising algorithm that acts on the network graph Laplacian, which leverages recent graph signal processing results. Further, we derive a novel formulation of the Jensen divergence for the denoised Laplacian under different states. Numerical simulations on synthetic data show that the denoising method improves the Jensen divergence of connectivity patterns corresponding to different task conditions. Furthermore, we apply the Laplacian denoising technique to brain networks estimated from real EEG data recorded during MI-BCI experiments. Using our novel formulation of the J-divergence, we are able to quantify the distance between the FC networks in the motor imagery and resting states, as well as to understand the contribution of each Laplacian variable to the total J-divergence between two states. Experimental results on real MI-BCI EEG data demonstrate that the Laplacian denoising improves the separation of motor imagery and resting mental states, and shortens the time interval required for connectivity estimation. We conclude that the approach shows promise for the robust detection of connectivity states while being appealing for implementation in real-time BCI applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源