论文标题
稳定性分析和带有局部耗散的3D深孤子的吸引力动力学
Stability analysis and attractor dynamics of 3D dark solitons with localized dissipation
论文作者
论文摘要
我们研究了在存在局部耗散的情况下,用深色或灰色扭结的细长的玻色丝凝结物的稳定性和吸引力动力学。为此,具有额外想象电势的3D Gross-Pitaevskii方程是数值求解的。我们分析了对耗散强度的依赖性的抑制不稳定性的抑制,并提取了用于实验逼真的参数的暗孤子稳定的阈值。低于阈值值,我们将衰减观察到孤子涡流中。在稳定阈值之上,我们在最初从灰色孤子开始时会观察到对黑暗孤子的吸引力动力学。我们发现,在所有初始条件下,深色孤子是系统的独特稳态 - 即使从BEC基态开始。
We study the stability and the attractor dynamics of an elongated Bose-Einstein condensate with dark or grey kink solitons in the presence of localized dissipation. To this end, the 3D Gross-Pitaevskii equation with an additional imaginary potential is solved numerically. We analyze the suppression of the snaking instability in dependence of the dissipation strength and extract the threshold value for the stabilization of the dark soliton for experimentally realistic parameters. Below the threshold value, we observe the decay into a solitonic vortex. Above the stabilization threshold, we observe the attractor dynamics towards the dark soliton when initially starting from a grey soliton. We find that for all initial conditions the dark soliton is the unique steady-state of the system - even when starting from the BEC ground state.