论文标题
量子几何图及其性质
Quantum geometric maps and their properties
论文作者
论文摘要
量子几何图与SU(2)自旋网络和Lorentz协变旋转网络相关联,是用于4维量子重力的自旋泡沫模型(和Tensorial Group Field理论)的重要组成部分。我们给出了此类地图的一般定义,其中包含当前的所有自旋泡沫模型,并在如此一般的层面上研究了它们的属性。然后,我们专门研究定义,以了解简单约束的精确实现如何影响特定模型中量子几何图的特征。
Quantum geometric maps, which relate SU(2) spin networks and Lorentz covariant projected spin networks, are an important ingredient of spin foam models (and tensorial group field theories) for 4-dimensional quantum gravity. We give a general definition of such maps, that encompasses all current spin foam models, and we investigate their properties at such a general level. We then specialize the definition to see how the precise implementation of simplicity constraints affects features of the quantum geometric maps in specific models.