论文标题
Mygym:用于视觉运动机器人任务的模块化工具包
myGym: Modular Toolkit for Visuomotor Robotic Tasks
论文作者
论文摘要
我们介绍了一个新颖的虚拟机器人工具包Mygym,该工具包为增强学习(RL),内在动机和模仿学习任务,接受了3D模拟器训练。然后可以轻松地将受过训练的任务转移到现实的机器人场景中。模拟器的模块化结构使用户能够在各种机器人,环境和任务上训练和验证其算法。与适合经典RL的现有工具包(例如OpenAi Gym,Roboschool)相比,Mygym还准备好用于视觉运动(结合视觉和运动)无监督的任务,需要内在动机,即机器人能够产生自己的目标。也有用于人类机器人互动的协作场景。该工具包为允许快速原型制作的视觉运动任务提供了验证的视觉模块,此外,用户可以自定义视觉子模块并使用自己的一组对象进行重新训练。实际上,用户选择所需的环境,机器人,对象,任务和奖励类型作为仿真参数,并且自动处理培训,可视化和测试本身。因此,用户可以完全专注于神经网络体系结构的开发,同时使用预定义参数控制环境的行为。
We introduce a novel virtual robotic toolkit myGym, developed for reinforcement learning (RL), intrinsic motivation and imitation learning tasks trained in a 3D simulator. The trained tasks can then be easily transferred to real-world robotic scenarios. The modular structure of the simulator enables users to train and validate their algorithms on a large number of scenarios with various robots, environments and tasks. Compared to existing toolkits (e.g. OpenAI Gym, Roboschool) which are suitable for classical RL, myGym is also prepared for visuomotor (combining vision & movement) unsupervised tasks that require intrinsic motivation, i.e. the robots are able to generate their own goals. There are also collaborative scenarios intended for human-robot interaction. The toolkit provides pretrained visual modules for visuomotor tasks allowing rapid prototyping, and, moreover, users can customize the visual submodules and retrain with their own set of objects. In practice, the user selects the desired environment, robot, objects, task and type of reward as simulation parameters, and the training, visualization and testing themselves are handled automatically. The user can thus fully focus on development of the neural network architecture while controlling the behaviour of the environment using predefined parameters.