论文标题

平滑的高斯混合模型用于视频分类和建议

Smoothed Gaussian Mixture Models for Video Classification and Recommendation

论文作者

Kafle, Sirjan, Gupta, Aman, Xia, Xue, Sankar, Ananth, Chen, Xi, Wen, Di, Zhang, Liang

论文摘要

集群和聚集技术,例如本地汇总描述符(VLAD)的向量及其端到端歧视训练的等效物,例如Netvlad最近在视频分类和动作识别任务中很受欢迎。这些技术通过将视频帧分配给群集,然后通过将框架的残差相对于每个群集的平均值来代表视频来运行。由于某些集群可能会看到很少的视频数据,因此这些功能可能很吵。在本文中,我们提出了一种新的聚类和聚集方法,我们称之为平滑的高斯混合物模型(SGMM)及其端到端歧视训练的当量,我们称之为深层平滑的高斯混合物模型(DSGMM)。 SGMM通过为该视频训练的高斯混合模型(GMM)的参数代表每个视频。低计数簇是通过使用在大量视频中训练的通用背景模型(UBM)来平滑视频特定估计来解决的。 SGMM比VLAD的主要好处是平滑,这使其对少量训练样本的敏感性降低。我们通过对YouTube-8M分类任务进行的广泛实验表明,SGMM/DSGMM始终通过一个小但统计学上显着的余量优于Vlad/NetVlad。我们还使用在LinkedIn创建的数据集来显示结果,以预测成员是否会观看上传的视频。

Cluster-and-aggregate techniques such as Vector of Locally Aggregated Descriptors (VLAD), and their end-to-end discriminatively trained equivalents like NetVLAD have recently been popular for video classification and action recognition tasks. These techniques operate by assigning video frames to clusters and then representing the video by aggregating residuals of frames with respect to the mean of each cluster. Since some clusters may see very little video-specific data, these features can be noisy. In this paper, we propose a new cluster-and-aggregate method which we call smoothed Gaussian mixture model (SGMM), and its end-to-end discriminatively trained equivalent, which we call deep smoothed Gaussian mixture model (DSGMM). SGMM represents each video by the parameters of a Gaussian mixture model (GMM) trained for that video. Low-count clusters are addressed by smoothing the video-specific estimates with a universal background model (UBM) trained on a large number of videos. The primary benefit of SGMM over VLAD is smoothing which makes it less sensitive to small number of training samples. We show, through extensive experiments on the YouTube-8M classification task, that SGMM/DSGMM is consistently better than VLAD/NetVLAD by a small but statistically significant margin. We also show results using a dataset created at LinkedIn to predict if a member will watch an uploaded video.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源