论文标题

中间统计的拓扑现场理论方法

Topological field theory approach to intermediate statistics

论文作者

Vleeshouwers, Ward L., Gritsev, Vladimir

论文摘要

随机矩阵模型提供了各种物理现象的现象学描述。突出的例子包括量子(混沌)系统的特征值统计,这些量子使用光谱形式(SFF)方便地表征。在这里,我们计算了无限顺序统一矩阵的SFF,其重量函数满足了Szegö的限制定理的假设。然后,我们考虑一个依赖参数的临界集合,该集合具有诸如Anderson定位跃迁之类的Ergodic到非癌转变的中间统计特征。同样的合奏是$ u(n)$ chern-simons理论的矩阵模型,$ s^3 $,并且该合奏的SFF与$(2n,2)$ - 圆环的homfly不变性成正比,与基本中的一个组件链接,而在反征表中则是一个分量。这是由拓扑字段和弦理论引起的一大批合奏之一,这些理论表现出中间统计。实际上,没有局部秩序参数表明,使用拓扑工具(例如我们在这里做到的)表征千古型过渡是很自然的。

Random matrix models provide a phenomenological description of a vast variety of physical phenomena. Prominent examples include the eigenvalue statistics of quantum (chaotic) systems, which are conveniently characterized using the spectral form factor (SFF). Here, we calculate the SFF of unitary matrix ensembles of infinite order with the weight function satisfying the assumptions of Szegö's limit theorem. We then consider a parameter-dependent critical ensemble which has intermediate statistics characteristic of ergodic-to-nonergodic transitions such as the Anderson localization transition. This same ensemble is the matrix model of $U(N)$ Chern-Simons theory on $S^3$, and the SFF of this ensemble is proportional to the HOMFLY invariant of $(2n,2)$-torus links with one component in the fundamental and one in the antifundamental representation. This is one of a large class of ensembles arising from topological field and string theories which exhibit intermediate statistics. Indeed, the absence of a local order parameter suggests that it is natural to characterize ergodic-to-nonergodic transitions using topological tools, such as we have done here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源