论文标题
$ t \ bar {t} $随机矩阵的变形
$T\bar{T}$ deformation of random matrices
论文作者
论文摘要
我们定义和研究随机矩阵模型的$ t \ bar {t} $变形,显示一致的定义需要将扰动和非扰动溶液包含到流程方程中。对于耦合的任意值,变形模型的定义很好,表现出对频谱络合的临界值的相变。该过渡是在单个和双切相之间的过渡,通常是三阶和与晶格仪理论中的总体跃迁相同的普遍性类别。 $ t \ bar {t} $双缩放模型的变形更加微妙和复杂,尽管我们讨论了障碍和可能的替代方案,但我们无法给出引人入胜的定义。提出了与有限的截止性杰基特尔博重力的初步比较。
We define and study the $T\bar{T}$ deformation of a random matrix model, showing a consistent definition requires the inclusion of both the perturbative and non-perturbative solutions to the flow equation. The deformed model is well defined for arbitrary values of the coupling, exhibiting a phase transition for the critical value in which the spectrum complexifies. The transition is between a single and a double-cut phase, typically third order and in the same universality class as the Gross-Witten transition in lattice gauge theory. The $T\bar{T}$ deformation of a double scaled model is more subtle and complicated, and we are not able to give a compelling definition, although we discuss obstacles and possible alternatives. Preliminary comparisons with finite cut-off Jackiw-Teitelboim gravity are presented.