论文标题

跨域潜在调制,用于变异转移学习

Cross-Domain Latent Modulation for Variational Transfer Learning

论文作者

Hou, Jinyong, Deng, Jeremiah D., Cranefield, Stephen, Ding, Xuejie

论文摘要

我们提出了变异自动编码器(VAE)框架内的跨域潜在调制机制,以改善转移学习。我们的关键思想是从一个数据域中采购深层表示,并将其用作对另一个域中潜在变量重新聚体化的扰动。具体而言,首先由统一的推理模型提取源和目标域的深度表示,并通过使用梯度反转来对齐。其次,学习的深度表示与替代域的潜在编码进行了交叉调节。然后,使用深层表示样品的重建与生成的生成之间的一致性被执行,以便在潜在空间中产生类间比对。我们将提出的模型应用于许多转移学习任务,包括无监督的域适应和图像兼容性翻译。实验结果表明,我们的模型提供了竞争性能。

We propose a cross-domain latent modulation mechanism within a variational autoencoders (VAE) framework to enable improved transfer learning. Our key idea is to procure deep representations from one data domain and use it as perturbation to the reparameterization of the latent variable in another domain. Specifically, deep representations of the source and target domains are first extracted by a unified inference model and aligned by employing gradient reversal. Second, the learned deep representations are cross-modulated to the latent encoding of the alternate domain. The consistency between the reconstruction from the modulated latent encoding and the generation using deep representation samples is then enforced in order to produce inter-class alignment in the latent space. We apply the proposed model to a number of transfer learning tasks including unsupervised domain adaptation and image-toimage translation. Experimental results show that our model gives competitive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源