论文标题

视觉猛击的显着束调整

Salient Bundle Adjustment for Visual SLAM

论文作者

Wang, Ke, Ma, Sai, Chen, Junlan, Lu, Jianbo

论文摘要

最近,视觉显着性和关注的哲学开始在机器人社区中获得知名度。因此,本文旨在通过使用显着性预测模型在SLAM框架中模仿这种机制。与将所有特征点视为优化过程中所有特征点相同的传统大满贯相比,我们认为显着特征点在优化过程中应该更重要。因此,我们提出了一个显着模型来预测显着图,该图可以捕获场景语义和几何信息。然后,我们通过将显着图的值作为传统捆绑捆绑调整方法中特征点的重量来提出了明显的束调整。用KITTI和EUROC数据集进行的最新算法进行的详尽实验表明,我们提出的算法在室内和室外环境中的现有算法均优于现有算法。最后,我们将使我们的显着数据集和相关源代码开源,以实现未来的研究。

Recently, the philosophy of visual saliency and attention has started to gain popularity in the robotics community. Therefore, this paper aims to mimic this mechanism in SLAM framework by using saliency prediction model. Comparing with traditional SLAM that treated all feature points as equal important in optimization process, we think that the salient feature points should play more important role in optimization process. Therefore, we proposed a saliency model to predict the saliency map, which can capture both scene semantic and geometric information. Then, we proposed Salient Bundle Adjustment by using the value of saliency map as the weight of the feature points in traditional Bundle Adjustment approach. Exhaustive experiments conducted with the state-of-the-art algorithm in KITTI and EuRoc datasets show that our proposed algorithm outperforms existing algorithms in both indoor and outdoor environments. Finally, we will make our saliency dataset and relevant source code open-source for enabling future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源