论文标题

在均匀磁场中2D Boussinesq系统的COUETTE流量的稳定性

Stability of Couette flow for 2D Boussinesq system in a uniform magnetic field

论文作者

Bian, Dongfen, Dai, Shouyi, Mao, Jingjing

论文摘要

在本文中,我们考虑域中具有磁性水力动力学对流的BousSinesQ方程,$ \ Mathbb {t} \ times \ Mathbb {r} $,并确定了Couette Flow flow $的非线性稳定性(1,0),p_ {sh} = 0,θ_{sh} = 0 $)。本文中的新颖性是,我们使用增强耗散的属性来克服困难的术语$ \ partial_ {xy}( - δ)^{ - 1} J $在线性化和非线性系统中,我们设计了一个新的傅立叶乘数运算符。然后,我们证明了线性化系统的渐近稳定性。最后,我们通过引导原理建立了完整系统的非线性稳定性。

In this paper, we consider the Boussinesq equations with magnetohydrodynamics convection in the domain $\mathbb{T} \times \mathbb{R}$ and establishes the nonlinear stability of the Couette flow $(\mathbf{u}_{sh} = (y,0), \mathbf{b}_{sh} = (1,0), p_{sh} = 0, θ_{sh} = 0$). The novelty in this paper is that we design a new Fourier multiplier operator by using the properties of the enhanced dissipation to overcome the difficult term $\partial_{xy}(-Δ)^{-1}j$ in the linearized and nonlinear system. Then, we prove the asymptotic stability for the linearized system. Finally, we establish the nonlinear stability for the full system by bootstrap principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源