论文标题
使用类不平衡胸部X射线数据集自动诊断气胸自动诊断的混合VDV模型
A Hybrid VDV Model for Automatic Diagnosis of Pneumothorax using Class-Imbalanced Chest X-rays Dataset
论文作者
论文摘要
气胸是一种危及生命的疾病,需要立即有效地诊断。在这种情况下,预后不仅耗时,而且容易发生人类错误。因此,使用胸部X射线的自动准确诊断方法是最大的要求。迄今为止,大多数可用的医疗图像数据集都有类不平衡问题。这项研究的主题是解决此问题,同时提出一种自动检测气胸的方式。我们首先比较了解决班级不平衡问题的现有方法,并发现数据级安装(即数据集的子集的集合)优于其他方法。因此,我们提出了一个名为VDV模型的新型框架,该框架是一个复杂的模型级别 - 数据级别的集成,并使用三个卷积神经网络(CNN),包括VGG16,VGG19,VGG-19和Densenet-121作为固定特征提取器。在每个数据级 - 安装功能中,从一个预定的CNN中提取的一个特征都被馈送以支持向量机(SVM)分类器,并使用投票方法计算每个数据级 - 安装的输出。一旦获得了具有三个不同CNN架构的三个数据级依次的输出,则再次使用投票方法来计算最终预测。我们提出的框架已在SIIM ACR Pneumothorax数据集和NIH胸部X射线数据集(RS-NIH)的随机样本上进行了测试。对于第一个数据集,达到了85.17%的召回,在接收器操作特征曲线(AUC)下,有86.0%的面积。对于第二个数据集,使用数据随机拆分95.0%的AUC召回了90.9%的召回,而85.45%的召回率则以77.06%的AUC召回,而通过患者的数据拆分,则获得了77.06%的AUC。对于RS-NIH,与文献的先前结果相比,获得的结果更高,但是对于第一个数据集而言,无法进行直接比较,因为该数据集尚未较早用于肺炎分类。
Pneumothorax, a life threatening disease, needs to be diagnosed immediately and efficiently. The prognosis in this case is not only time consuming but also prone to human errors. So an automatic way of accurate diagnosis using chest X-rays is the utmost requirement. To-date, most of the available medical images datasets have class-imbalance issue. The main theme of this study is to solve this problem along with proposing an automated way of detecting pneumothorax. We first compare the existing approaches to tackle the class-imbalance issue and find that data-level-ensemble (i.e. ensemble of subsets of dataset) outperforms other approaches. Thus, we propose a novel framework named as VDV model, which is a complex model-level-ensemble of data-level-ensembles and uses three convolutional neural networks (CNN) including VGG16, VGG-19 and DenseNet-121 as fixed feature extractors. In each data-level-ensemble features extracted from one of the pre-defined CNN are fed to support vector machine (SVM) classifier, and output from each data-level-ensemble is calculated using voting method. Once outputs from the three data-level-ensembles with three different CNN architectures are obtained, then, again, voting method is used to calculate the final prediction. Our proposed framework is tested on SIIM ACR Pneumothorax dataset and Random Sample of NIH Chest X-ray dataset (RS-NIH). For the first dataset, 85.17% Recall with 86.0% Area under the Receiver Operating Characteristic curve (AUC) is attained. For the second dataset, 90.9% Recall with 95.0% AUC is achieved with random split of data while 85.45% recall with 77.06% AUC is obtained with patient-wise split of data. For RS-NIH, the obtained results are higher as compared to previous results from literature However, for first dataset, direct comparison cannot be made, since this dataset has not been used earlier for Pneumothorax classification.