论文标题

视频工作面试中答案转录自动评分的分层推理图形神经网络

A Hierarchical Reasoning Graph Neural Network for The Automatic Scoring of Answer Transcriptions in Video Job Interviews

论文作者

Chen, Kai, Niu, Meng, Chen, Qingcai

论文摘要

我们解决了从异步视频工作访谈(AVI)中的自动语音识别(ASR)抄本自动评分候选人的能力的任务。关键挑战是如何在问题和答案之间构建依赖关系,并为每个问题解答(QA)对进行语义级别的交互。但是,AVI最近的大多数研究都集中在如何更好地表示问题和答案上,但忽略了依赖性信息和之间的互动,这对于QA评估至关重要。在这项工作中,我们提出了一个层次推理图形神经网络(HRGNN),以自动评估问题解答对。具体来说,我们构建了一个句子级的关系图神经网络,以捕获问题和答案之间或之间句子的依赖性信息。基于这些图形,我们采用语义级别的推理图表网络来对当前质量检查会话的相互作用状态进行建模。最后,我们提出了一个封闭式的复发单位编码器,以表示最终预测的时间问题 - 答案对。在CHNAT(现实世界数据集)上进行的经验结果验证了我们所提出的模型显着优于基于文本匹配的基准模型。使用10种随机种子的消融研究和实验结果也显示了我们模型的有效性和稳定性。

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源