论文标题

预测性超级可靠交流:生存分析的观点

Predictive Ultra-Reliable Communication: A Survival Analysis Perspective

论文作者

Samarakoon, Sumudu, Bennis, Mehdi, Saad, Walid, Debbah, Merouane

论文摘要

超可靠的通信(URC)是支持身临其境和关键任务5G应用程序的关键推动力。由于缺乏针对URC系统量身定制的准确统计模型,满足这些应用程序的严格可靠性要求是具有挑战性的。在这封信中,通过统计学习方法来表征动态通道的无线连接性。特别是,提出了基于模型和数据驱动的学习方法,以估计一组训练样本的非阻滞连通性统计数据,且对动态渠道统计不了解。使用生存分析的原则,根据通道阻断事件的概率来衡量无线连接的可靠性。此外,通过推断传输持续时间的置信度预测给定可靠的非阻滞连接的最大传输持续时间。结果表明,使用基于模型的低至中度可靠性目标需要低样本复杂性的基于模型的方法,检测通道阻塞事件的准确性更高。相比之下,数据驱动的方法显示出更高的检测准确性,以100 $ \ times $样本复杂性成本为更高的可靠性目标。

Ultra-reliable communication (URC) is a key enabler for supporting immersive and mission-critical 5G applications. Meeting the strict reliability requirements of these applications is challenging due to the absence of accurate statistical models tailored to URC systems. In this letter, the wireless connectivity over dynamic channels is characterized via statistical learning methods. In particular, model-based and data-driven learning approaches are proposed to estimate the non-blocking connectivity statistics over a set of training samples with no knowledge on the dynamic channel statistics. Using principles of survival analysis, the reliability of wireless connectivity is measured in terms of the probability of channel blocking events. Moreover, the maximum transmission duration for a given reliable non-blocking connectivity is predicted in conjunction with the confidence of the inferred transmission duration. Results show that the accuracy of detecting channel blocking events is higher using the model-based method for low to moderate reliability targets requiring low sample complexity. In contrast, the data-driven method shows higher detection accuracy for higher reliability targets at the cost of 100$\times$ sample complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源